
Dispersion-enabled quantum state control
in integrated photonics
RYAN P. MARCHILDON1,* AND AMR S. HELMY1,2

1The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto,
Ontario M5S 3G4, Canada
2Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 3G4, Canada
*Corresponding author: ryan.marchildon@mail.utoronto.ca

Received 7 December 2015; revised 26 January 2016; accepted 26 January 2016 (Doc. ID 255175); published 3 March 2016

Integrated optics has brought unprecedented levels of stability and performance to quantum photonic circuits.
However, integrated devices are not merely micron-scale equivalents of their bulk-optics counterparts. By exploiting
the inherently dispersive characteristics of the integrated setting, such devices can play a remarkably more versatile role
in quantum circuit architectures. We show this by examining the implications of linear dispersion in an ordinary
directional coupler. Dispersion unlocks several novel capabilities for this device, including in situ control over photon
spectral and polarization entanglement, tunable photon time ordering, and entanglement-sensitive two-photon
coincidence generation. Also revealed is an ability to maintain perfect two-photon anti-coalescence while tuning
the interference visibility, which has no equivalent in bulk optics. The outcome of this work adds to a suite of state
engineering and characterization tools that benefit from the advantages of integration. It also paves the way for
reevaluating the possibilities offered by dispersion in other on-chip devices. © 2016 Optical Society of America
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1. INTRODUCTION

The quantum properties of light can unlock a variety of enhanced
and novel technological capabilities. Among these are secure com-
munications [1], nonclassical simulation [2], nonlocal imaging
[3], and pathway-selective exciton spectroscopy [4]. Such quan-
tum photonic technologies have traditionally been implemented
on the bench top with discrete optical components. More re-
cently, the need for improved scalability has fuelled widespread
interest in the development of on-chip quantum circuits. Much
of this work has concentrated on the generation [5–8], manipu-
lation [9–12], and detection [13,14] of entangled [15] photon
pairs, often with the goal of replicating tasks previously performed
using bulk optics. However, integrated optical components can
exhibit highly wavelength-dependent (i.e., dispersive) behavior
compared to their bulk optics counterparts, and investigating
whether this leads to functionalities not previously available is
also an important objective. Such dispersion has been shown to
provide unprecedented tailorability over the properties of two-
photon states generated by engineered nonlinear interactions
[16–18] in integrated waveguides. Here, we consider new ways
of leveraging dispersion for the manipulation of two-photon states
and their correlation properties.

Directional couplers are a common building block of inte-
grated quantum circuits whose dispersion properties have yet
to be fully exploited. They are typically implemented through
the evanescent coupling of two identical waveguides and are

characterized by a power splitting ratio η�λ�. Their primary role
has been to serve as on-chip beam splitters, often to mediate quan-
tum interference [9,10]. Due to the presence of dispersion in
η�λ�, these same couplers can also act as a wavelength demulti-
plexer (WD) for specific sets of nondegenerate wavelengths, with-
out relying on waveguide modal mismatch. In fact, dispersion can
cause the coupler’s behavior to transition between “ideal” beam
splitter operation and “ideal” WD operation in response to either
the properties of the quantum state or systematic shifts to the
coupling strength. The implications this has for two-photon state
manipulation has yet to be studied. We show that this attribute of
directional couplers grants them a versatile set of new function-
alities, which includes the post-selective tuning of spectral entan-
glement, entanglement-sensitive coincidence detection, and the
ability to maintain perfect anti-coalescence while allowing full
tunability over the two-photon interference visibility.

In what follows, we use symmetric 2 × 2 directional couplers as
an example of quantum state engineering in integrated photonic
systems without the loss of generality. As such, an essential step is
to parameterize the coupler’s response for the two-photon state in
terms of generic dimensionless variables that can be mapped to
any combination of coupler and state properties. The details of
this parametrization are described in Supplement 1, but we in-
troduce the key definitions here. Suppose two single-mode wave-
guides are coupled over a length L, such as in Fig. 1(a). For
symmetric rectangular waveguides, this leads to a power splitting
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ratio of η�λ� � cos2�κ�λ�L�, where κ�λ� is the coupling strength
[19,20]. The wavelength dependence of the coupler is usually suf-
ficiently described by its first-order coupler dispersion M �
dκ�λ�L∕dλ at a reference wavelength λ00, together with the value
of η�λ00�. Let λ01 and λ02 be the central wavelengths of a photon
pair that evolves through this coupler, withΛ � jλ02 − λ01j giving
the nondegeneracy. Defining Δη � jη�λ02� − η�λ01�j allows the
coupler response to be classified as beam splitter-like for Δη →
0 or WD-like for Δη → 1. An illustrative example of a practical
dispersive coupler design is provided in Supplement 1.

The space of all possible Δη is spanned by η�λ00� and the di-
mensionless product MΛ. This has been plotted in Fig. 1(b), as-
suming λ00 � �λ01 � λ02�∕2 and negligible higher-order coupler
dispersion (see Supplement 1). This plot provides a useful guide
for relating the results of this paper to transitions between beam
splitter and WD behavior. A special condition, η�λ01��
η�λ02� � 1, occurs along the lines η�λ00� � 0 and MΛ �
π∕2, and corresponds to the splitting ratios η�λ01� and η�λ02�
being antisymmetric about the 50:50 splitting value η � 0.5.
This will turn out to have important implications for tasks involv-
ing photon anti-coalescence.

2. DISPERSION-ENABLED CAPABILITIES

A. Tunable Spectral Entanglement

Suppose two nondegenerate photons enter a directional coupler
from a single input port so that the input state takes the form
jψiin � jλ01ijjλ02ij, where j ∈ fA; Bg. The two-photon state
at the output of the coupler is then post-selected for outcomes
where the photons exit from different waveguides (i.e., separated).

Depending on the coupler response, the output waveguide taken
by a given photon can reveal information about that photon’s
spectral properties, which in turn alters the spectral entanglement
of the post-selected output state. AWD-like response with Δη �
1 predetermines which photon emerges from each output port.
This leads to an output state of the form jψiout � jλ01iAjλ02iB
(or jψiout � jλ01iBjλ02iA, depending on the input port), where
entanglement of the central wavelengths is lost. On the other
hand, a beam splitter-like response with Δη � 0 leads to the
superposition jψiout � �jλ01iAjλ02iB � jλ01iBjλ02iA�∕

ffiffiffi
2

p
, where

the full spectral entanglement of the input state is retained. By
controlling Δη through the selection of M or η�λ00� (and thus
controlling, effectively, the amount of spectral information known
about the output state), a directional coupler can select any level
of entanglement between these extremes.

Figure 2 shows how the choice of M and η�λ00� can
tailor spectral entanglement in the post-selected output state
(see Appendix A and Supplement 1 for calculation details).
Spectral entanglement has been quantified using the Schmidt
number (SN) [21,22], which has a minimum value of unity
in the absence of entanglement, and increases with greater entan-
glement. The input state used in this example has Λ � 10 nm,
SN � 2.31, and equal FWHM intensity bandwidths of Δλ �
1 nm for the photon marginal spectra. It is modeled after a
Type-I spontaneous parametric downconversion (SPDC) process
[23] with a degeneracy wavelength of λ00 � 1550 nm and pump
bandwidth of ΔλP � 0.25 nm. As the coupler response moves
away from the beam splitter-like coordinates and toward the
WD-like coordinate at (MΛ � π∕2, η�λ00� � 0), the Schmidt
number of the output state smoothly transitions from its input
value of SN � 2.31 down to a value of SN ≃ 1.15. Note that
some spectral entanglement remains at the WD-like coordinate
even though the output paths reveal the central wavelengths.

Fig. 1. Navigating the coupler response. (a) Depiction of a generic
two-port directional coupler, shown with simple implementations of
thermal and electro-optic tuning for in situ control over η�λ00�;
(b) map of possible coupler responses to a two-photon input state, as
characterized by Δη. The coordinates labelled BS denote 50:50 beam-
splitter behavior, while WD denotes perfect demultiplexing of central
wavelengths λ01 and λ02.

Fig. 2. Tunability of output state entanglement. (a) Dependence of
Schmidt number on the coupler response for post-selected outcomes
where the photons are found in different waveguides. The maximum
value of SN � 2.31 corresponds to the input state entanglement.
(b) Slice along MΛ � π∕2, plotted in terms of κ�λ00�.
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This is because the photon spectra are still inherently anticorre-
lated about their central wavelengths, due to energy and momen-
tum conservation in the pair generation process. Such residual
entanglement vanishes as Δλ → 0.

In situ tuning of the Schmidt number becomes possible
through active control of η�λ00�. Effectively, this prepares states
of the form jψiout � �jλ01iAjλ02iB � μjλ01iBjλ02iA�∕

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p
with a tunable value of μ. We emphasize that this tuning occurs
post-generation, without requiring changes to pump bandwidth,
nonlinear interaction length, or any other parameters affecting the
photon pair generation process. This makes it particularly well
suited for tailoring spectral entanglement in a monolithically
integrated setting, in applications where the photons remain path-
distinguishable. Control of η�λ00�, and thereby the Schmidt
number, can be achieved electro-optically or thermally by modi-
fying the waveguide core-cladding index contrast to systematically
shift κ�λ00�. Other potential tuning methods include the quan-
tum-confined Stark effect [24,25] and, for certain fiber-based
coupler assemblies, a micrometer-controlled waveguide separa-
tion [26]. Operation along the line MΛ � π∕2 offers the most
precise control over entanglement at any nonzero Λ. The value
of M is fixed but can be tailored through a judicious design of
the coupler dimensions and material system. Note that, since M
scales with L, dispersion can be enhanced by increasing the 50:50
coupling length beyond its minimum necessary value
of L � π∕�4κ�λ00��.

This tuning approach also provides control over polarization
entanglement, since correlations in the spectral and polarization
degrees of freedom are coupled [22], except in the special case of
maximal polarization entanglement. A state’s polarization entan-
glement can be quantified using its concurrence C [27,28], with
C � 0 and C � 1 indicating minimal and maximal entangle-
ment, respectively. As the state Schmidt number increases, polari-
zation entanglement tends to decrease, and vice-versa [22]. This
inverse relationship between SN and C allows for the on-chip
preparation of non-maximally entangled states jψi � �jH; V i �
r exp iϕjV ;H i�∕

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
with a tunable value of r < 1, with r

related to the concurrence by C � 2r∕�1� r2�. Such states offer
significant advantages over maximally entangled states in certain
applications such as closing the detection loophole in quantum
nonlocality tests [29].

The tunable spectral entanglement we present may also have
useful capabilities for two-photon spectroscopy [30] and light-
induced matter correlations [31,32]. In these applications, the
time ordering of when each photon reaches the sample can affect
the two-photon absorption probability. This is because a particu-
lar two-photon transition can have pairings of absorption path-
ways corresponding to whether λ01 or λ02 is absorbed first. For
some systems, when both time orderings are permitted by the
incident light, these pathways destructively interfere to suppress
the two-photon absorption probability, as is the case for two un-
coupled two-level atoms [31]. Such transitions can thus be selec-
tively controlled by changing which time orderings (and hence
absorption pathways) are allowed.

As illustrated in Fig. 3, control over the allowed time orderings
is achievable by placing a time delay in one path (e.g., path A) and
tuning μ by tuning the coupler parameter η�λ00�. Suppose μ � 0
[Fig. 3(b)] so that the post-selected state at the coupler output is
jψiout � jλ01iAjλ02iB . In this case, λ01 is always delayed relative
to λ02. Hence, only one set of time-ordered pathways is allowed.

On the other hand, when μ � 1 [Fig. 3(c)] so that jψiout �
�jλ01iAjλ02iB � jλ01iBjλ02iA�∕

ffiffiffi
2

p
, the delay is applied in super-

position to either λ01 or λ02, and hence both sets of time-ordered
pathways are allowed.

Such control over the time ordering adds to the versatility of a
single on-chip light source for manipulating and probing two-
photon processes, such as controlling the degree to which bi-
exciton transitions may be blocked [4]. Note that the ability to
selectively excite a single absorption path (e.g., using μ � 0) is
only possible with quantum light sources. Classical sources have
no intrinsic time ordering and hence will excite both paths equally
(as with μ � 1). A tunable dispersive coupler thus allows the sam-
ple’s behavior for both the classical and nonclassical conditions to
be directly compared, without the need to change the light source
and with virtually no disruption to the experimental setup.

B. Perfect Anti-Coalescence with Tunable Visibility

Control over two-photon path correlations is another important
ability for quantum photonics. In this section, we start by explor-
ing how such correlations can be impacted by dispersion. We then
describe how this enables conditions with no bulk optics equiv-
alent; namely, perfect photon anti-coalescence that remains inde-
pendent of the visibility of interference effects, even as this
visibility is tuned via η�λ00� or MΛ. Later in Section 2.C, we will

Fig. 3. Probing matter with tunable time ordering. (a) Photons leaving
the coupler from different output ports have two possible pathways:
jλ01iAjλ02iB or jλ01iB jλ02iA. These coincide temporally and hence are
mutually coherent. The photon in waveguide A is then temporally de-
layed by an interval τ relative to its twin photon in waveguide B, so that
one photon always arrives at the sample before the other. The wavelength
of the delayed photon depends on whether the pathway was jλ01iAjλ02iB
or jλ01iB jλ02iA. (b) For μ � 0, only the jλ01iAjλ02iB pathway is allowed,
such that the photon of wavelength λ02 is always absorbed first. (c) For
μ � 1, the superposition permits two absorption pathways: λ02 followed
by λ01, and λ01 followed by λ02. In certain systems [31] where it is not
possible to distinguish which of these pathways led to the final state of the
sample, the pathways destructively interfere to suppress the two-photon
absorption probability. Note that at μ � 1 the pathways jλ01iAjλ02iA and
jλ01iB jλ02iB are also present due to nondeterministic separation (the
coupler behaves as a beam splitter rather than a WD), yielding photons
with no relative delay. These are not time ordered but do support both
absorption pathways and therefore compliment the path-interference
effects.
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highlight possible applications for the dispersion-unlocked corre-
lation behavior that underscore the breadth of capabilities that a
single dispersive coupler can provide.

Path correlations are commonly engineered using quantum in-
terference [10,12,33–36]. In the famous Hong—Ou—Mandel
effect [33], two photons enter a 50:50 beam splitter from differ-
ent input paths (antibunched), and coalesce to exit as a bunched
state where they are most likely to be found in the same output
path. Ideally the antibunched (i.e., separated) outcome probabil-
ity becomes PS � 0 under conditions of maximal interference,
compared to the “classical” value of PC

S � 0.5 if interference were
completely absent. The reverse process, called anti-coalescence,
wherein PS → 1, is useful for providing interference-facilitated
pair separation (IFPS) to separate photons generated by integrated
sources [12,36,37]. Note that the subscript S is used to delineate
these from probabilities corresponding to bunched (i.e., non-
separated) outcomes; this is detailed further in Supplement 1.
The two-photon interference can be quantified by the interfer-
ence visibility V S � jPI

S j∕PC
S , where PI

S � PS − PC
S represents

the contribution of quantum interference toward the antibunched
outcome probability.

We shall now look specifically at anti-coalescence. While per-
fect coalescence requires V S to be unity (see Supplement 1), cou-
pler dispersion can lift this restriction for anti-coalescence. As we
shall see, for the first time V S can be made to have any arbitrary
value between 0 and 1 while the separation probability is kept
constant at PS � 1. Anti-coalescence requires a path-entangled
input state of the form

jΨi � �jψiAj0iB � e−iθj0iAjψiB �∕
ffiffiffi
2

p
; (1)

where j0i refers to vacuum, jψij represents a photon pair in path
j, and θ is a relative phase shift. Such states can be generated by
coherently pumping two sources of photon pairs, as seen in
Refs. [12] and [36]. This places no restrictions on the tunability
of the photon pair sources. The spectral properties of jψij are
described by the biphoton amplitude (BPA) ϕj�ω1;ω2�. We will
assume perfect path indistinguishability such that ϕA�ω1;ω2� �
ϕB�ω1;ω2� ≡ ϕ�ω1;ω2�.

Figure 4 shows how PS, PC
S , P

I
S , and V S change as a function

of the coupler parameters when the relative phase shift is either
θ � 0 or θ � π. These plots have been generated for a co-
polarized input state from Type-I SPDC having Δλ � 0.25 nm,
ΔλP � 0.1 nm and a degeneracy wavelength of λ00 � 780 nm
(see Appendix A). The dependence of these on photon bandwidth
will be discussed in Section 2.C. The value of jPI

S j is maximal at
coordinates where the coupler responds as a 50:50 beam splitter,
and minimal when it responds as a WD. The “classical” proba-
bility PC

S follows roughly the opposite trend, obtaining its maxi-
mal value of PC

S � 1 for a WD-like response, and decreasing to
PC
S � 0.5 for beam splitter-like responses. Curiously, along the

lines η�λ00� � 0.5 and MΛ � π∕2, changes to PC
S and jPI

S j
are in perfect balance such that their sum always equals unity.
This balancing is associated with the condition η�λ01��
η�λ02� � 1, which leads to PS � 1 and hence perfect anti-coa-
lescence (i.e., deterministic separation) along either η�λ00� �
0.5 or MΛ � π∕2, selected through the choice of θ. Along these
two lines, the interference visibility V S varies smoothly between 0
and 1. By operating at MΛ � π∕2 with θ � π, and actively
controlling η�λ00� through thermal or electro-optic tuners, any
value of V S can be selected while maintaining a perfect separation

fidelity. Note that, unlike before, this does not alter the spectral
entanglement of post-selected output states, due to the presence
of path entanglement at the input.

We have just described how coupler dispersion enables the
possibility of tuning V S while maintaining PS � 1. The applica-
tions of this capability are not yet known, but its novelty warrants
further exploration. It also serves as an example of how integrated
components, through their inherent dispersive properties, can ac-
cess behaviors that bulk bench-top components cannot. Further
to this, we now highlight other features of the dispersion-
unlocked behavior that have potential applications for state
characterization.

C. Opportunities for State Characterization

1. Entanglement-Sensitive Coincidence Detection

For most permutations of coupler and state attributes, PS is ac-
curately described by the behavior in Fig. 4. However, deviations
from the values of PS shown can occur when the dimensionless
product MΔλ, involving coupler dispersion and photon
bandwidth, becomes large. These are described in full in
Supplement 1. Fig. 5 indicates that the extent of these deviations
depends not only onMΔλ, but also on the spectral entanglement
of the input state. This opens up the possibility of discerning the
Schmidt mumber of the input state from the antibunched coinci-
dence count rate at the coupler output, which is proportional
to PS .

The results in Fig. 5 were calculated for degenerate input states
having Λ � 0 nm, Δλ � 10 nm, λ00 � 780 nm, and θ � 0.
The product MΔλ was swept by varying M , with η�λ00� �
0.5 kept constant. Input state entanglement was controlled
through the Type-I SPDC pump bandwidth ΔλP
(see Appendix A and Supplement 1). In the limit of
MΔλ → 0, the above calculation parameters give PS � 1, in
agreement with Fig. 4(e). Larger values of MΔλ lead to decreases
in PS . However, increasing the SN of the input state has the effect
of asymptotically restoring PS to unity.

This behavior can be understood by examining Eqs. (A.3)–
(A.9) in Appendix A. The probability PS is determined from a
sum over all possible combinations of frequencies ω1 �
2πc∕λ1 and ω2 � 2πc∕λ2 weighted by the BPA. When the state
is spectrally uncorrelated (i.e., SN � 1), the combinations of
η�λ1� and η�λ2� contributing to this sum are not necessarily equi-
distant from η�λ00� � 0.5 and hence can deviate from the
η�λ1� � η�λ2� � 1 condition required for perfect anti-coales-
cence. However, when the photons are spectrally anticorrelated
due to entanglement, the BPA restricts all contributing λ1, λ2
combinations to be approximately equidistant from λ00, which
acts to restore the splitting ratio antisymmetry. Larger products
of MΔλ allow PS to be more severely degraded because a greater
proportion of the nonvanishing λ1, λ2 combinations are able to
violate the antisymmetry. Only in the limit of Δλ → 0, where the
state is entirely described by the central wavelengths λ01 and λ02,
is the splitting ratio antisymmetry condition strictly enforced.

The bandwidth and entanglement sensitivity of PS grants dis-
persive couplers additional capabilities for state characterization.
For example, dispersive couplers could empower a simple, fast,
all-integrated technique for measuring the Schmidt number of
an ensemble of states without needing to perform full state
tomography to reconstruct the BPA. Fig. 6 describes how this
can be implemented. In this case, we show the photons being
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characterized immediately after leaving the source, in the context
of source calibration. However, they could also be measured after
interacting with a bath or system. This could be helpful, for ex-
ample, in metrological applications where the Schmidt number is
monitored as an indication of state purity and hence the interac-
tion under investigation. To obtain SN, first the marginal photon
spectra are measured with a waveguide-assisted spectrograph
method [38] that uses chromatic group velocity dispersion
(GVD) to map spectral components to time-of-arrival at a sin-
gle-photon detector. Next, provided M is known, the values of
Δλ and Λ measured in the first step are used to discern SN from
standard two-photon coincidence measurements at the coupler
outputs. The sensitivity of the technique diminishes as the pho-
tons are made narrowband or increasingly entangled, but can be
enhanced by designing the coupler to haveM as large as possible.

Obtaining SN by previous methods would require a measure-
ment of the full BPA, which hinges on the spectral resolution of

Fig. 5. Dependence of PS on entanglement. The calculated two-
photon separation probability is shown as a function of the input state
Schmidt number for MΛ � 0, η�λ00� � 0.5, θ � 0, and Δλ � 10 nm,
at several values of MΔλ. For SN > 4 (not shown), each curve asymp-
totically approaches unity.

Fig. 4. Dependence of two-photon path correlations on the coupler response. Calculations depict (a) the “classical” separation probability, (b)–(c) the
contribution of quantum interference, (d) the resultant interference visibility, and (e)–(f ) total separation probability. Toggling the phase shift from θ � 0
to θ � π leads to a sign change for PI

S but leaves its magnitude jPI
S j unaltered. This sign change, in turn, toggles the line of maximal PS between η�λ00� �

0.5 and MΛ � π∕2, respectively.
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the measurement system. Measuring the BPA entirely on chip is
possible using spectrographs [38], but its resolution can be se-
verely limited by detector timing jitter. In comparison, precise
values of Δλ and Λ for the coupler-assisted technique are more
easily obtained, in part due to the straightforward use of interpo-
lation to increase confidence in these values, but also because un-
certainties from the limited spectral resolution enter only in one
axis, as opposed to two. Hence, the trade-offs between the num-
ber of measurements, the total measurement time, and precision
in SN scale more favorably for the coupler-assisted technique. A
direct, rapid, and precise measurement of SN would be particu-
larly useful for the real-time monitoring of sources where SN is
tunable [39] and is being used as a control parameter [32].
Additionally, it would be advantageous for monitoring a stream
of states whose properties reveal real-time information about a
dynamic system or environment.

The converse functionality—estimating the photon band-
width for a known Schmidt number—could also be useful, in
the context of indistinguishable pure photons having tunable
attributes [40,41]. As long as the SN remains reasonably close
to unity, Δλ could be measured entirely on chip using only
the coupler and coincidence detectors, without the need for tun-
able bandpass filters, GVD fibers, or spectrometer capabilities.
Presently, highly bandwidth-tunable pure photons can be gener-
ated in a free-space setup [41], but recent trends toward integra-
tion suggest that this capability may eventually be available in a
monolithic platform, where on-chip characterization would be
helpful for source calibration and monitoring drift.

2. Versatility of Dispersive Couplers

Since couplers are already an essential on-chip device, the state
characterization capabilities granted to them by dispersion can
be exploited with minimal increase to the circuit complexity

or footprint. This allows dispersive couplers to provide an
extremely versatile set of functionalities in a compact form factor,
which the following example highlights. Consider the reconfigur-
able circuit in Fig. 7. The dispersive coupler in this circuit can
serve several purposes. It can provide IFPS to deterministically
separate the photons at the coupler output. With the addition
of electro-optic or thermal tuning, it can also be utilized for other
previously described state engineering functionalities, such as tun-
able spectral entanglement. On top of this, the circuit could easily
be modified for coupler-based SN measurements by tapping pho-
ton source B with a high-dispersion element and an additional
detector, as per Fig. 6. Accomplishing all of these tasks through
a single dispersive coupler may help to make most efficient use of
precious on-chip real estate.

Even without adding a tap to source B for a spectrograph mea-
surement, the circuit in Fig. 7 can already access some informa-
tion about the state. The relationship between V S and Λ
described in Section 2.B provides a route for measuring the non-
degeneracy Λ of an ensemble of states entirely on chip. This re-
quires the toggling of a time delay τ between the dispersive
coupler input paths. The interference visibility is obtained from
V S � jR0∕Rτ − 1j, where R0 is the coincidence count rate at zero
time delay (as measured by on-chip single photon detectors), and
Rτ is the coincidence rate at a time delay τ that is much larger than
the two-photon coherence time (see Appendix A). Provided M is
known, this value of V S can be mapped back to the state non-
degeneracy Λ, as per Fig. 4(d). This technique is best applied to
narrowband photons since the sensitivity of V S to Λ decreases as
MΛ becomes large.

Fig. 6. All-integrated SN measurement. To apply the technique, the
photon pairs must be in the generic path-entangled state jΨi of Eq. (1).
The relative phase is ideally θ � 0; for other values of θ, PS is less sen-
sitive to SN. To measure SN, the state is sampled at three locations
(shown as Y-junctions for simplicity). Detectors A and B sample the
two-photon statistics at the coupler output to obtain PS . Detector C ob-
tains spectrographs, and hence Λ and Δλ, by sampling jΨi via a high-
dispersion element such as a fiber or a waveguide grating operated near its
band edge. It is sufficient to measure these spectrographs from only one
of the source output paths, since the photon pair properties are assumed
to be path-indistinguishable (i.e., jψiA � jψiB). The data obtained for Λ
and Δλ (together with the dispersive coupler attributes) can then be used
to map the measured PS to a corresponding value of SN (see Fig. 5).

Fig. 7. State characterization with a multipurpose dispersive coupler.
A path superposition of the form jΨi (Eq. A.1) is created through co-
herent pumping of two waveguide sources of photon pairs (e.g., gener-
ated via parametric downconversion [37]). A tunable Mach–Zehnder
interferometer (MZI) allows the relative time delay to be set to either
zero (ϕτ � 0) or τ (ϕτ � π). Pump power can be adjusted between paths
via ϕp to compensate for asymmetric losses when the delay of τ is imple-
mented. Unconverted pump photons are removed using ring filters.
MZIs at the output can be toggled (ϕA�B� � π) to sample the two-
photon correlations with single-photon detectors. The rate of detection
coincidences for zero time delay and a delay of τ can be used to determine
V S , which in turn reveals MΛ. The dispersive directional coupler must
have η�λ00� � 1∕2 for this measurement. Note that adding electro-optic
or thermal tuners to the dispersive coupler can enable arbitrary control
over V S by tuning η�λ00�. Spectral-entanglement tuning is also possible
when ϕp is set to deliver pump power to only one of the two photon pair
sources.
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3. CONCLUSIONS

Integrated couplers are already becoming a key building block of
photonic quantum circuits. This is partly because they offer
greater stability and scalability than bulk-optics beam splitters
and other bench-top components. It is also because the highly
precise micron-scale fabrication of such couplers helps eliminate
path-length mismatches and other path asymmetries, which is
critical for achieving high-fidelity quantum interference [42].
However, in addition to these known benefits, our work has re-
vealed an as-of-yet untapped potential for integrated couplers to
be utilized in a more versatile way, far beyond their traditional role
as a beam splitter substitute.

We found that harnessing the full dispersion properties of an
integrated directional coupler unlocks many novel capabilities
for the device. These include tunable photon entanglement and
time ordering, as well as bandwidth-sensitive and entanglement-
sensitive two-photon effects that can be exploited for state char-
acterization. Some of these capabilities can be achieved in bulk
optics, but not with the convenience nor stability that this inte-
grated approach provides. Yet others have no bulk-optics counter-
part, such as the ability to fully tune the two-photon interference
visibility (i.e., the sensitivity to time delays at the coupler input)
while maintaining a constant flux of separated (i.e., anticoalesced)
photon pairs. Particularly remarkable is that all of these function-
alities can be provided by a single integrated coupler, making it a
versatile yet compact tool for both state engineering and on-chip
state characterization. This is made possible by the capacity of
dispersive couplers to smoothly transition between the extremes
of beam splitter and wavelength-demultiplexer behavior, in a
manner without parallel in bulk optics.

Ultimately, we have shown that conventional integrated optics
devices can have much more to offer quantum optics if reeval-
uated in unconventional ways. Our analysis can be extended
to provide a fresh look at several other coupler types and the addi-
tional capabilities their dispersive characteristics might offer.
These include multimode interferometers and rings, as well as
atypical coupler geometries with more exotic transfer functions
[43]. Cavity-based couplers may also have interesting uses when
examined beyond the identical-photon regime [44]. This work
also lays foundations for studying the implications of dispersion
in coupled waveguide arrays [45] and three-dimensional tritters
[46]. Such systems can be considered not only for two-photon
phenomena, but also for engineering higher-order path correla-
tion effects involving multi-pair production or multiple sources.

APPENDIX A

State Representation. A co-polarized pair with both photons
beginning in waveguide j can be represented by the pure state

jψij �
Z

dω1dω2ϕ
j�ω1;ω2�âj†�ω1�âj†�ω2�jvaci; (A.1)

where âj†�ω� is the canonical mode creation operator
for waveguide j. The BPA is normalized according toR
dω1dω2jϕj�ω1;ω2�j � 1. Rather than generating the BPA

from device-specific mode dispersion parameters [23,47], it is
more convenient to define the BPA directly in terms of the pho-
ton bandwidths and central wavelengths of interest. A BPA that
mimics the output of a Type I SPDC process can be constructed
from

ϕ�ω1;ω2� � ϕP�ω1 � ω2��ϕ1�ω1�ϕ2�ω2� � ϕ2�ω1�ϕ1�ω2��;
(A.2)

where ϕn�ω� are the marginal photon spectra and ϕP�ω1 � ω2�
is the pump spectrum. This construction satisfies the necessary
exchange symmetry and has all of the key qualitative features
of a typical Type I BPA computed from SPDC theory. The mar-
ginal spectra were Gaussian and defined in terms of wavelength as
ϕn�λ� � exp�−2 ln 2�λ − λ0n�2∕Δλ2�, with equal FWHM inten-
sity bandwidths of Δλ. The pump spectrum was also Gaussian
with a FWHM intensity bandwidth of ΔλP . Narrowing ΔλP be-
low Δλ has the effect of increasing the spectral correlations, and
hence Schmidt Number, of the two-photon state.

Evolution through a directional coupler. Consider the evo-
lution of the pure state jΨi of Eq. (A.1) through a directional
coupler of length L and coupling strength κ�ω�. It is assumed
that the output remains in a pure state. Let b̂j�ω� represent
the mode operators at the coupler output. These are related to
the input mode operators by�

b̂A†�ω�
b̂B†�ω�

�
�

�
cos�κ�ω�L� i sin�κ�ω�L�
i sin�κ�ω�L� cos�κ�ω�L�

��
âA†�ω�
âB†�ω�

�
:

(A.3)

Note that the magnitude of the matrix elements in Eq. (A.3)
are related to the power-splitting ratio by j cos�κ�ω�L�j �
�η�ω��−1∕2 and j sin�κ�ω�L�j � �1 − η�ω��−1∕2. Using this trans-
formation, the state BPAs at the output of the coupler can be
written as

Φj→pq�ω1;ω2� � ϕj�ω1;ω2�Gj→p�ω1�Gj→q�ω2�; (A.4)

where

Gj→q�ω� �
�
cos�κ�ω�L�; if j � q;
sin�κ�ω�L�; if j ≠ q: (A.5)

In terms of our notation, Φj→pq�ω1;ω2� is the amplitude as-
sociated with photons 1 and 2 being coupled from input path j to
output paths p and q, respectively. While the form of Eq. (A.4) is
general, the Gj→q�ω� will change if a different coupler architec-
ture is used (such as an asymmetric coupler).

Two-photon outcome probabilities. The probability of
finding photons 1 and 2 in output paths p and q, respectively,
is calculated from Ppq �iΨjb̂p†b̂q†b̂qb̂pjΨi and found to be

Ppq � RC
pq � cos�πδpq�RI

pq�θ�; (A.6)

where δpq is the Kronecker delta,

RC
pq �

Z
dω1dω2�jΦA→pq�ω1;ω2�j2 � jΦB→pq�ω1;ω2�j2�;

(A.7)

is the “classical” probability contributed by sources A and B in the
absence of interference, and

RI
pq�θ� �

Z
dω1dω22 Refe−iθΦB→pq�ω1;ω2�Φ�A→pq�ω1;ω2�g;

(A.8)

is a nonclassical modifier accounting for the effects of path inter-
ference. These expressions are given in their most general form so
that they can be readily applied to any arbitrary set of coupler
and two-photon state attributes. Note that

P
pqPpq � 1. The

probability PS of obtaining an antibunched (separated) outcome
is then
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PS � PAB � PBA � PC
S � PI

S ; (A.9)

with “classical” and “interference” components given by PC
S �

RC
AB � RC

BA and PI
S � RI

AB � RI
BA.

Obtaining V S for on-chip measurement of Λ. We refer to
the configuration shown in Fig. 7. Let PS�Λ; τ� represent the total
antibunched outcome probability at nondegeneracy Λ and rela-
tive time delay τ. Assuming η�λ00� � 0.5 and θ � 0, PS�Λ; 0� �
1 at all values of Λ. The coincidence detection rate R0 at zero
delay therefore corresponds to maximum separation fidelity; thus
the probability of pair separation at nonzero delay τ can be ob-
tained from PS�Λ; τ� � Rτ∕R0. Provided τ is large enough that
jψiA and jψiB (the possible photon-pair histories) are no longer
coherent, quantum interference will not occur at that delay time;
thus, PI

S�Λ; τ� � 0 and PS�Λ; τ� � PC
S �Λ; τ�. It then follows

from the definition of V S that

V S �
jPS�Λ; 0� − PS�Λ; τ�j

PS�Λ; τ�
� j1 − Rτ∕R0j

Rτ∕R0

�
����R0

Rτ
− 1

����:
(A.10)

For η�λ00� � 0.5, the visibility V S maps to a unique value of
MΛ providedMΛ ≤ π∕2 [due to periodicity of V S ; see Fig. 4(d)].

See Supplement 1 for supporting content.
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