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We present a modular design for integrated programmable multimode sources of arbitrary Gaus-
sian states of light. The technique is based on current technologies, in particular recent demon-
strations of on-chip photon manipulation and the generation of highly squeezed vacuum states in
semiconductors and generates a very broad range of Gaussian states. While the design is generic
and is not dependent on any platform for realistic realization, we adopt recent experimental results
on compound semiconductors as a demonstrative example. Such a device would be valuable as a
source for many quantum protocols that range from imaging to communication and information
processing.

Light provides an excellent platform for encoding
quantum information that can be sent over long dis-
tances. In principle, the information encoded in light
can be manipulated efficiently using currently available
passive and active component, but many practical issues
make the preparation and manipulation of such quan-
tum states a difficult task in practice. While bulk optics
provides a low-loss platform to manipulate information
encoded in small photonic systems, scalability remains
a major problem. Integrated optics offers an effective
route to mitigate scalability challenges, and a number of
demonstrations of state preparation and control in inte-
grated optical devices have been reported recently [1–4].
These were designed with linear optics quantum comput-
ing in mind, assuming that the information is encoded
in finite dimensional systems using single photons. In
this work we show how to extend these schemes to the
realm of continuous variable Gaussian states, by provid-
ing a blueprint for an integrated circuit that can be pro-
grammed and reconfigured to prepare any Gaussian state
within a wide range of parameters. The design, approach
and components utilized are based on currently available
technologies, and rely on natural non-linearities in inte-
grated waveguides to prepare initially squeezed vacuum
states in multiple modes.

Most quantum information protocols have been de-
signed for quantum systems with discrete degrees of
freedom. These can be implemented using single pho-
tons with rail and/or polarization encoding [5]. How-
ever, such implementations suffer from several draw-
backs. These include the need for synchronously gener-
ated single photons, photon-photon interactions that are
difficult to achieve, gates that are probabilistic, and ineffi-
cient single-photon detection. Continuous variable (CV)
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quantum information protocols that utilize light’s con-
tinuous degrees of freedom offer several advantages over
discrete approaches, in particular removing the require-
ment for single photons. In recent years both CV and
hybrid CV/discrete approaches have been gaining signif-
icant momentum as alternative to their discrete counter
parts for quantum information processing [6, 7].

In CV protocols, the initial states are usually Gaus-
sian and can be generated from vacuum through a se-
ries of displacements, linear rotations, and squeezing [8].
Since these transformations are routinely achieved in
bulk-optics, arbitrary Gaussian state generation seems
straightforward in principle. In practice, however, the
limited scalability and stability of bulk optics approaches
is a hindrance to the development practical and large-
scale quantum protocols, especially when the protocol
must be scaled up to many modes, as required for exam-
ple for CV cluster states [9, 10]. Moreover the require-
ment for in-line squeezing, i.e squeezing of an arbitrary
state, which is simple in principle (usually by using χ(3)

non linearities), is difficult in practice even in bulk sys-
tems.

The ability to generate arbitrary multimode Gaussian
states from an integrated chip would serve as an impor-
tant milestone towards demonstrations of greater com-
plexity and practical quantum technologies. Advances in
the fabrication of integrated photonic circuits have made
it possible to create large stable optical interferometers
exhibiting low loss [11]. Moreover, semiconductor nonlin-
ear waveguides have recently been used to produce highly
squeezed vacuum states [12, 13]. Together, these com-
ponents are sufficient for generating and manipulating
Gaussian light.

In this work we describe a generic architecture for in-
tegrated photonic devices that can be programmed to
prepare arbitrary N -mode Gaussian states. While it is
known that such a device can be built in principle by us-
ing a sequence of rotations, squeezing and displacements,
our design relies on a number of practical observations: 1-
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It is much easier to generate squeezed vacuum states than
to squeeze an arbitrary state. Consequently all squeezing
is pushed to the beginning of the circuit. 2- It is possible
to modify Paris’s approximate displacement method [14]
such that only a single displacement beam is needed, re-
ducing the number of injected modes required from ≈ N
to 3, regardless of N . 3- It is possible to control all ele-
ments using tunable phase shifters. As a result the device
can be fully programmable using current technology. 4-
The design is modular, allowing easy adaptation to dif-
ferent platforms and changing technologies. For example,
it may be convenient to have each piece fabricated sep-
arately using a different platform. The resulting design
allows a stable, programmable, scalable device that relies
on current technological capabilities and can be easily
adapted to different platforms.

I. MODULAR GENERATION OF ARBITRARY
GAUSSIAN STATES

A state is called Gaussian if it has a Gaussian Wigner
function; Equivalently an N mode state is a pure Gaus-
sian state if and only if it can be generated from the vac-
uum by using a sequence of Gaussian operations [7, 15].
Those can be decomposed into a sequence of displace-
ment D([α]), rotation R([θ]) and squeezing S([β]) oper-
ations, where the arguments are the multimode displace-
ment vector, [α] rotation matrix [θ] and squeezing matrix
[β] (see Appendix A for details). While each of these op-
erations can be implemented with a known optical com-
ponent, a generic sequence is difficult to implement, with
the biggest difficulty being the requirement for in-line
squeezing, i.e squeezing of an arbitrary state. However,
for Gaussian state generation it is possible to place the
squeezing at the beginning of the sequence and generate
single mode squeezed vacuum states in each mode (See
Appendix A for the derivation) removing the requirement
for in-line squeezing.

A realistic approach to state generation can be based
on the decomposition

|G〉 = D([α])R([ζ])S([β1m]) |0〉 (1)

where [β1m] is a diagonal squeezing matrix indicating
only single mode squeezing. Furthermore, any N mode
mixed Gaussian state can be created by tracing out N
modes from a 2N mode purificatio,n which is also a Gaus-
sian state. For this reason we can limit our discussion to
pure Gaussian states without loosing generality.

The decomposition of (1) implies the following stages
for preparing an N mode Gaussian state:

1. Initialization of coherent beams with the same
phase and relevant wavelengths in the relevant
modes.

2. Preparation of N squeezed vacuum states (from co-
herent beams) in modes 1..N , e.g using χ(2) or χ(3)

non-linearities.

3. Rotation, consisting of an N -mode interferometer
(on modes 1..N).

4. Displacement, e.g by using the coherent beam
to displace each mode (1..N) through a weakly-
reflecting beam splitter or equivalent device.

A. Example: Generating pure a one-mode
Gaussian state in bulk optics

To illustrate the ideas presented above, we briefly con-
sider the generation of a pure one-mode arbitrary Gaus-
sian state implemented using generic bulk optics compo-
nents as shown in Fig. 1. The squeezing, rotation, and
displacement transformations in phase space are depicted
sequentially in Fig. 2. The scheme is as follows:
(i) Initialization: The protocol requires 2 phase

locked beams, a signal wavelength λs (e.g. 1550 nm) for
displacement and a pump wavelength λp (e.g. 775 nm)
for generating the squeezed vacuum. In general it is
useful to have an additional phase-locked beam of wave-
length λs to use as a reference or local oscillator (LO) for
subsequent homodyne detection. A common approach is
to coherently split a high intensity beam at λs 3 ways,
with one beam used to generate the λp pump via sec-
ond harmonic generation (SHG) in a nonlinear crystal
‘doubler’ (e.g. BiBO). The squeezed light generated at
wavelength λs by this pump (see below) maintains a sta-
ble relative phase with respect to the other two beams.
(ii) Squeezed vacuum preparation: Squeezing (see

Fig. 2 ii) is most often obtained through nonlinear wave-
mixing processes, such as spontaneous parametric down-
conversion (SPDC) in a second-order nonlinear medium
[16, 17].This is done for example by using a periodically-
poled lithium niobate (PPLN) waveguide designed for
squeezed light generation in the telecom C-band at λs =
1550 nm with a pump field at λp = 775 nm. When oper-
ated in the single-pass configuration without optical feed-
back from a cavity, the output is a squeezed vacuum field
at 1550 nm having squeezing parameter r with propor-

tionality r ∝ χ(2)
eff |Ap|L, where χ

(2)
eff is the effective non-

linearity and L is the waveguide length [18]. The squeez-
ing parameter r is related to the phase-space quadra-
ture variances by 〈∆X̂2〉 = e−2r/2 and 〈∆P̂ 2〉 = e2r/2.

Where the quadratures are defined as x̂ = (â + â†)/
√

2

and p̂ = (â − â†)/i
√

2. The upper bound on r is set by
the parametric gain of the nonlinear medium, determined
by both practical and physical limitations on Ap, L, and

χ
(2)
eff . The largest r measured in a squeezed state to date

is r = 1.73 [19], equivalent to 15 dB below the classical
shot noise level.
(iii) Rotation: Arbitrary rotations in the single-mode

(see Fig. 2 iii) case are straightforward, requiring only a
single phase-shifter to modify the relative phase with the
reference or LO. Note that by convention, all rotations
due to phase shifts, reflections and free evolution are de-
fined in a clockwise (CW) sense relative to the quadrature
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FIG. 1: One-mode Gaussian state generation with bulk op-
tics. The initialization stage, highlighted in red, is also used in
the N -mode protocol. Squeezed vacuum is generated through
SPDC followed by a low pas filter (LPF) to remove the pump.
An electro-optic modulator (EOM) is used to generate a phase
shift. Displacement is generated via mixing with a high power
phase-locked coherent state. Acronyms: HPF = high pass fil-
ter; DB = displacement beam; LO = local oscillator; HWP+P
= half wave plate and polarizer for amplitude control.

axes, as shown in Fig. 2.
(iv) Displacement: The displacement operator D(α)

(see Fig. 2 iv) can be approximated by mixing the
squeezed state with a bright coherent state |α0〉 at a
beamsplitter (or equivalent mode coupling device) [14]
with reflection coefficient η << 1 such that

√
ηα0 = α.

The limitations of this method are discussed in Sec B
and the fidelity between the desired state and the actual
state is plotted in fig 3 for different states and values of
η.

II. GENERATION OF ARBITRARY N-MODE
GAUSSIAN STATES ON-CHIP

The construction implied by (1) can be used as a basis
for a tunable on-chip N mode Gaussian state generator.
Below we describe a generic approach for building such
a device, using four key modules. We then move to the
simplest non-trivial example, a tunable two mode pure
Gaussian state generator, using AlGaAs as a model plat-
form. Tunability in the AlGaAs example (see Fig 4) is
achieved using variable phase shifters. This allows a sin-
gle approach in the generic case, although it is possible
to combine it with tunable directional couplers.

A. Generic modular approach

Recent work demonstrating on-chip squeezing [12, 20,
21], tunable phase-shifts [22, 23], and arbitrary linear op-
tical transformations [11] have assembled all the key in-
gredients necessary for independent control of S([β1m]),
R([θ]), and D([α]) in an integrated quantum circuit. In
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FIG. 2: Phase-space depiction of the four stage process. A
one-mode vacuum state (i) is squeezed (ii), rotated (iii) and
displaced (iv).

the generic setting we consider each of the four stages
as an independent module that can be fitted to the de-
sired platform. Our aim is to show that the technology
for each module has already been demonstrated and to
suggest possible implementations.

Initialization: The initialization stage consists of
preparing coherent 775 nm beam (pump) for use as a
source for SPDC and 1550 nm for both he displacement
and as a reference, all beams must be phase coherent. In
principle a nonlinear waveguide that is phase-matched
for SPDC with 775 nm can also achieve the 1550 nm-to-
775 nm SHG, in practice this is limited by the amount of
optical power that can be handled by the chip without
burning facets or inducing unwanted nonlinearities. How-
ever, in many quantum information processing tasks co-
herence with an external reference should be maintained.
We therefore consider the same external pumping as in
the single-mode case of Sec. I A (see initialization stage
in fig 1). The use of this external initialization stage does
not affect scalability since the architecture suggested re-
quires only two beams (the 1550 nm displacement beam
and the 775 nm beam) to be injected into the device,
regardless of N .

Generation of squeezed vacuum: The key require-
ments for an on-chip source of strong squeezing are a
high effective nonlinearity, low optical loss, and a long
interaction length that is typically facilitated by the use
of cavities due to limitations on the pump power. An
on-chip squeezed light source based on low-loss silicon
nitride microrings was recently demonstrated [12], where
by controlling integrated microheaters to modify the cav-
ity coupling, the measured squeezing was electrically tun-
able between 0.5 dB and 2 dB (corresponding to 0.9 dB
and 3.9 dB when corrected for losses). This approach
utilized a four-wave-mixing process stemming from third-
order (χ(3)) nonlinearities. In another approach, which
utilized parametric downconversion from second-order
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(χ(2)) nonlinearities in a periodically-poled lithium nio-
bate waveguide resonator [21], 2.9 dB of squeezing (cor-
responding to 4.9 dB in the lossless case) was directly
measured. Both of these examples used continuous-wave
pumping. Utilizing the higher peak powers and hence
larger effective nonlinearities available through femtosec-
ond pulsing can offer even higher degrees of squeezing. In
Sec. II B, we describe an architecture based on AlGaAs
that may be capable of producing squeezing in excess of
10 dB in a single-pass configuration under fs-pumping,
before losses and detector efficiencies are taken into ac-
count. Programmable Mach Zehnder interferometers (see
Fig. 4 and Sec. II B) can be used to tune the squeez-
ing parameter by attenuating the pump. Once squeezed
light has been generated, the pump is typically filtered to
prevent it from causing unwanted nonlinear phase mod-
ulation or squeezing elsewhere in the circuit. Common
methods of filtering are wavelength demultiplexers built
from asymetric coupled waveguides [24], ring resonator
filters, or Bragg reflector gratings [25] which utilize the
photonic bandgap effect.

Rotation: A generic rotation R([α]) can be gener-
ated efficiently using an an array of linear optics elements
(beam splitters and phase shifters) [26, 27]. In integrated
circuits, tunable low-loss phase shifters can be achieved
thermo-optically using resistive heaters to modify the lo-
cal refractive index [22], or electro-optically using bias
voltages [23], where the optimum choice depends on the
material system. For example, AlGaAs circuits bene-
fit from a strong electro-optic Pockels effect owing to
a large intrinsic χ(2) nonlinearity [23], whereas silicon-
on-insultor (SOI) circuits possesses a relatively strong
thermo-optic effect [11]. Beam-splitting transformations
can be provided by directional couplers which evanes-
cently couple optical modes between adjacent waveguides
[28], or multi-mode interferometers (MMIs) which work
based on self-imaging effects [29]. 3D multiport split-
ters can also be realized on-chip [30], but planar nearest-
neighbour coupling remains the most compatible with
conventional fabrication techniques. In-situ tunability
over the splitting ratio is commonly achieved by concate-
nating a pair of two-mode splitters with a tunable phase
shifter in one path between them, forming a MZI [23].
An MZI with a tunable internal phase φ to control its
splitting ratio, followed by an additional external phase
shift θ in one outgoing arm, becomes the basic unit cell
of reprogrammable circuits for universal rotations (see
Fig. 4). Recently, Harris et al. demonstrated a repro-
grammable SOI quantum photonic chip comprised of 56
MZIs and 213 phase shifters [11].

Displacement: It is possible to use Paris’s method
[14] for approximating the displacement operator D([α])
by pairing each mode with an ancillary strong coherent
state mode and displacing each mode individually. How-
ever, such an architecture would be cumbersome to en-
gineer with 2D planar waveguides and makes inefficient
use of chip real-estate. Instead it is possible to use a
single ancilla mode (mode 0) containing a strong coher-

ent state |α0〉 that cascades through an array of strongly
cross-coupling mode splitters, displacing each mode se-
quentially as depicted in Fig. 3(a). In our notation this
can be written as a rotation R([∆]) =

∏
k Tk where Tk

is a two-mode splitter transformation between modes k
and k − 1 with reflection coefficient ηk.
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FIG. 3: (a) The cascaded displacement scheme for N = 4. At
each step, a strong coherent state |α′k〉, in mode k is used to
displace mode k + 1 by αk+1 = α′k

√
ηk and swap with that

mode using a beam splitter with reflectivity ηk << 1. Note
that the final modes are shifted by −1 with respect to the
original modes so that the final mode N is the ancilla which
is discarded. (b) Fidelity between a squeezed state after an
approximate displacement and the corresponding displaced
squeezed state (see Sec. III A). For a fixed value of α0, the
fidelity depends on the reflection coefficient factor η and the
squeezing parameter r for mode 1, which in turn relates to the
average number of photons. More photons and higher η will
increase the probability of photons ‘leaking’ to to the ancilla
mode.

At each coupling intersection, the strong coherent
beam in mode k − 1 displaces the state in mode k and
then the modes swap. In order to achieve this the re-
flection coefficient ηk must be small, ηk << 1 (i.e most
of the light from mode k is transmitted to k − 1 and
vice versa). If |Ψ〉 = R([ζ])S([β1m]) |0〉 is the state be-
fore the displacement, the approximate transformation
can be written as (see Appendix B for details):

R([∆])D0(α0)|Ψ〉 ⊗ |vac〉0

≈ DN (αN )P↑

N−1∏
k=0

Dk(αk)|Ψ〉 ⊗ |vac〉0 (2)
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where ; P↑ is a permutation of modes that takes 0→ N
and k → k − 1 for all k ∈ {1, · · · , N}; In Fig 3 the
operator P↑ represents the fact that the state to be dis-
placed has input modes 1, 2, 3, 4 and corresponding out-
put modes 0, 1, 2, 3.

The displacement of each individual mode can be con-
trolled by tuning the splitting factor ηk of each mode
coupler and rotating the phase, while taking into ac-
count all ηm and αm for which m < k. Tunability in
ηk can be achieved by implementing the mode coupler
as an MZI with phase control [11, 23], or through by
electro-optically or thermally inducing a modal mismatch
between the two coupled waveguides [31]. Adding phase
shifters φk between stages to tune the phase of each |αk〉
allows control over the displacement angle.

The first correction for the approximate displacement
comes from the possibility that some photons from the
displaced mode will leak into the displacement beam (see
Methods sec. B). Experimentally it is possible to put
bounds on this error by blocking the displacement beam
and counting the number of photons exiting port N . In
general, the approximation will not be a dominant source
of error as long as ηk is small compared to the probabil-
ity that a single mode will lose a photon elsewhere in the
circuit. In sec. III A (see also Fig. 2 b)we give a numer-
ical example of the bounds on this approximation in the
singe mode case.

B. Example: Arbitrary two-mode Guassian states
generated in an AlGaAs integrated circuit

The simplest scenario illustrating all elements of the
architecture described above is a device for generating
arbitrary pure two-mode Gaussian states as shown in the
circuit in Fig. 4 (a). We use AlGaAs as an example plat-
form since it offers a broad range of quantum-circuit func-
tionalities, including electro-optic tuning, self-pumped
electrically-injected quantum state generation, and on-
chip single photon detection [23, 33–35] (the latter two
are not directly useful for our design, but could become
useful in various extensions, for example generation of
non-Gaussian states). It also supports a large intrinsic
second-order (χ(2)) optical nonlinearity that facilitates
the generation of highly-squeezed states. In particular,
recent results indicate squeezing parameters of r > 3 in
AlGaAs waveguides [36]. Here we consider the degener-
ate Type I parametric process where the downconverted
photons are identical in frequency, polarization, and spa-
tial mode. This allows a coherently-pumped array of par-
allel one-mode squeezers.

The circuit layout is shown in Fig. 4(a), where eleven
electrodes provide dynamic reconfigurability through
electro-optic phase shifts, and MZIs serve as variable
beamsplitters. To split the injected pump equally be-
tween the two parametric generator paths, we use a 1-by-
2 port MMI due to the robustness of its fixed 50:50 split-
ting ratio against fabrication imperfections which elimi-

nates the need for additional electrodes. Electrodes v1
and v3 adjust the fraction of pump power injected into
the parametric generators, thereby tuning the squeezing,
with v2 and v4 providing phase control. A Bragg re-
flection grating (BRG) filter blocking the ‘signal’ wave-
length of 1550 nm is used to define the start of the
parametric generator, while a second BRG blocking the
775 nm pump terminates it. The parametric generator
is a segment of the nonlinear waveguide that is narrowed
in width. The narrowing adjusts the modal dispersion
of the waveguide such that phase-matching is satisfied
for 775 nm only within the narrowed segment, with the
phase-matching tuning curve (e.g. see Fig. 2 in Ref. [37])
shifting to shorter pump wavelengths as the waveguide
width is increased [38]. Together with the BRGs, this
provides a strategy for restricting squeezed light genera-
tion to only the desired region while preventing it else-
where within the nonlinear circuit. Following squeezed
light generation, arbitrary U(2) rotations are provided
via electrodes v5-v7, with v5 controlling the two-mode-
mixing between modes 1 and 2. Finally, displacements
are controlled by electrodes v8-v11 (as in Fig. 3(a)),
where the MZIs are operated near conditions of perfect
cross-coupling (mode swapping) with η ≈ 0, and the
displacement beam cascades sequentially through each
mode before being discarded.

State evolution through the circuit was simulated using
the symplectic transformation method [7, 39]. Fig. 4(b)
depicts the electrode voltages and corresponding out-
put states for five different configurations. For read-
ability we have re-normalized the voltage values to the
following mappings: for squeezing v1, v3 ∈ [0, 1] →
r ∈ [0, rmax], where in this case we show tuning up
to rmax = 1 (8.7 dB); for single-mode phase rotations
v2, v4, v6, v7 ∈ [0, 1] → θ ∈ [0, π]; for two-mode mix-
ing v5 ∈ [0, 1] → η ∈ [1, 0]; for displacement angle
v8, v10 ∈ [−1, 1] → φ ∈ [−π, π]; and for displacement
magnitude v9, v10 ∈ [0, 1] → η ∈ [0, 0.0125], where the
resultant displacement of mode k is Dk(αk‘

√
ηk+1) (see

Fig. 3(a)) and we have set |α0| = 40 as the magnitude
of the injected displacement beam after coupling into the
circuit. Note that we remain under the estimated bound
of η ≤ 0.0180 needed to maintain fidelities of 98% or
greater with the ideal displaced state (see Sec. B).

Fig. 4(c) shows two Wigner function slices from the
output state, computed for each configuration after trac-
ing out the discarded ancilla mode. The (x2, p2) slice
shows the quadrature evolution in mode 2, while the
(x1, x2) slice shows correlations between modes. In
configuration (1) we begin with squeezed vacuum in
mode 1 (r = 0.75 or 6.5 dB) and unsqueezed vacuum
in mode 2. In configuration (2) we squeeze both modes
equally (r = 1), rotating mode 1 by π/4 rad and dis-
placing it by |D| = [〈x̂〉2 + 〈p̂〉2]−1/2 = 2.7 photons (at
an angle of −π/4 rad) to achieve an amplitude-squeezed
state, and rotating mode 2 by 3π/4 rad and displacing it
by D = 5.5 photons (at an angle of −π/4 rad) to achieve
a phase-squeezed state. In (3) we mix two single-mode
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FIG. 4: (a) Schematic of dynamically reconfigurable AlGaAs circuit for generating arbitrary two-mode pure Gaussian states.
The device includes the three reconfigurable modules (squeezing, rotation and displacement). The initialization module is
external and assumed to be the same as in Fig. 1. The 11 electrodes can be used to program the state II B). Five example
settings (b) generate the five states depicted in (c).

squeezed states at a 50:50 splitter to achieve a two-mode
squeezed state as seen by the correlations in the (x1, x2)
Wigner slice. In (4) we use phase-shifts at v6 and v7 to
rotate the (x1, x2) correlations, while further increasing
the displacement of both modes via v9 and v11. In con-
figuration (5) we revert back to two single-mode squeezed
states, but in a different quadrant of phase space.

The phase shifters envisaged in Fig. 4 are based on
electro-optic modulation as seen in previous AlGaAs
quantum circuits [23]. Circuit reconfigurability can be
achieved using a myriad of techniques, some being more
favourable than others depending on the specific needs of
the application. Electro-optic and thermal tuners have
the advantage of being implementable monolithically on
the same platform as passive components, with the for-
mer capable of achieving modulation speeds in the GHz,
while the latter is limited by the thermal time constant
but can achieve switching speeds in the MHz when ap-
propriately designed. In cases where performance en-
hancements such as higher speed, better switching ex-
tinction, or lower bias voltages are needed, advanced
coupler designs such as grating-assisted, asymmetric, or
ring-resonator couplers can be used at the expense of a
reduced operating bandwidth [40–42]. Whereas a simple
electro-optic MZI coupler may need tens of volts to a few

volts of bias, a ring resonator coupler can require merely
a fraction of a volt. In some cases, flip-chip bonding with
active devices may be appropriate, but this comes at the
cost of increased optical loss, and hence is only really
suitable for modulation of the pump. For example, rapid
tuning of the squeezing parameter r can be achieved with
speeds exceeding 10 GHz via absorption-based modula-
tion of the pump using the quantum-confined stark effect
[43] with flip-chip bonded III-V semiconductors.

III. CHALLENGES AND LIMITATIONS

The architecture provided is based on existing tech-
nologies. However, throughout this work we assumed
that everything is ideal and neglected the corrections
due to the approximate displacement stage. The ap-
proximation depends on how small we can keep ηk which
in turn depends on the maximal displacement we want
to allow. Consequently, there is a trade-off between the
maximal displacement and the validity of the approxima-
tion. Below we give an explicit calculation of how well
the displacement approximation works in the one-mode
case and follow with a discussion of additional challenges
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that will need to be addressed in a real device such as
loss, and mode distinguishability.

A. Bounds for Single Displacement Stage

In real integrated circuits there are practical trade-offs
between how small η is and our ability to precisely con-
trol it. Variability in η due to the stochastic nature of
fabrication will be more pronounced when the target qui-
escent η is small. Accurate adjustment of Dk(α) through
in-situ tuning of η may also be challenging if we are lim-
ited to η << 1. It is therefore useful to establish what
upper bound on η still provides good fidelity to an ideal
displacement transformation. We first consider the sim-
ple case of a single-mode squeezed vacuum state |ψ〉 dis-
placed by an ancilla coherent state |α0〉, resembling the
first stage in a multi-stage cascade. The total state before
displacement is given by:

|Ψ〉 = |α0〉0 ⊗ |ψ〉1. (3)

In the ideal case of a perfect displacement transforma-
tion, where we treat the approximation of Equation (2)
as an equality, the output state is

|Ψ′〉Ideal = D0(α0
√
η1)R0(π/2)|ψ〉0⊗R1(π/2)|α0

√
1− η1〉1,

whereas applying the standard mode-mixing transforma-
tion to the state gives the true output:

|Ψ′〉Actual = U0,1(η1) [|α0〉0 ⊗ |ψ〉1] (4)

Fig. 3(b) shows the Uhlmann fidelity [32] of these
two states |Ψ′〉Ideal and |Ψ′〉Actual computed as a func-
tion of η and squeezing parameter r. Under our as-
sumptions of a pure squeezed vacuum state |ψ〉, we
see that in the limit of r → 0 (i.e. unsqueezed vac-
uum) the fidelity becomes 100% and is independent
of η, which is the expected behaviour since we know
U0,1(η1) [|α0〉0 ⊗ |vac〉1] = |α0

√
η1〉0 ⊗ | − iα0

√
1− η1〉1

which agrees with |Ψ′〉Ideal for all η. As the squeez-
ing parameter r increases, we see that smaller η is re-
quired to ensure a high-fidelity transformation. To good
approximation, the bound for obtaining a fidelity of at
least F is given by η ≤ ar−b, where for F ≥ 95% we
have {a = 0.04265, b = 2.163}, and for F ≥ 98% we
have {a = 0.0181, b = 2.067}. As seen in Fig. 3(b), for
squeezing of up to nearly r = 0.5 (4.3 dB), η can be kept
relatively large at above η = 0.1 while still satisfying the
approximation. However, for an input state with 15 dB of
squeezing (r = 1.73) we require η ≤ 0.013 and η ≤ 0.0058
for fidelities of F ≥ 95% and F ≥ 98% respectively.

B. Squeezing

Squeezing in the waveguide can be increased by either
increasing the length of the squeezing stage, or by in-
creasing the 775 nm beam power. In practice too much

pump power can damage the device, have unwanted ef-
fects such as self phase modulation, or be self-limiting
through two-photon absorption which increases with the
pump intensity. Increasing length has two problems, first
it will require a larger device, but more significantly it
will increase loss (see below). As a consequence practi-
cal limitations will constrain the maximal squeezing per
mode.

C. Loss

Minimizing optical loss is crucial to fully benefit from
the squeezing achievable in a given platform. This
can prove quite challenging in practice owing to how
quickly the squeezing decays as loss increases. The
amount of measurable squeezing falls as ST = 10 ·
log10

[
T · 10−S0/10 + (1− T )

]
where S0 and ST refer to

the measurable squeezing in dB before and after losses
respectively, and T is the total transmission efficiency
[18]. Hence, the 30 dB of squeezing achievable under
lossless conditions by the AlGaAs platform described in
Section II B, which surpasses the threshold of ∼ 20.5 dB
needed for fault-tolerant cluster-based quantum com-
puting using Gottesman-Kitaev-Preskill (GKP) encoding
[44], quickly falls below 20.5 dB for only 0.034 dB of op-
tical loss. Optical losses in an integrated circuit can be
caused by waveguide sidewall roughness, mode leakage at
waveguide bends, reflections at material interfaces (such
as the waveguide facets), or modal mismatches when cou-
pling into and particularly out of the devices. Loss there-
fore poses the most problematic constraint for scalabil-
ity, since for arbitrary rotations the device length grows
quickly with the number of modes (around n2 per the
Reck scheme [26]), and loss is exponential in the cir-
cuit length. One possible mitigation strategy is entangle-
ment distillation, which uses local non-Gaussian elements
(such as photon counting) and sacrificial ancilla states to
enhance the purity and correlations of a state subjected
to loss [6, 45]. This can benefit from the relative ease in
which a large number of ancillas can be prepared on an
integrated chip compared to bulk approaches. Another
distillation approach is to use heralded noiseless linear
amplifiers [46, 47], which can be realized compactly in
integrated optics, and in the case of AlGaAs, can even
be monolithically embedded within the same platform
[36].

IV. CONCLUSIONS AND OUTLOOK

We provided a generic architecture for a device that
can prepare arbitrary multimode Gaussian states. The
design is based on current technologies, for example Al-
GaAs integrated waveguides, and is kept modular so that
it can be easily adopted for a variety of integrated plat-
forms. It is fully programmable and can generate any
Gaussian state up to some limitations that depend on
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the specifics of the materials and the fabrication process
(See Sec. III).

Gaussian states are a useful initial state for many
quantum information protocols [7] including sensing [48]
quantum communication [49, 50] and quantum comput-
ing [9]. A device that can generate arbitrary multi-
mode Gaussian states be useful for generating the op-
timal states for these protocols, and will provide motiva-
tion for further research on optimization of CV protocols
under realistic constraints such as loss. One further ad-
vantage of a programmable device(apart from versatility)
is the ability to use feedback optimization methods such
as those used recently in NMR to correct unknown im-
perfections [51, 52], fast reconfigurability would also al-
low to correct for of optical phase drifts. Moreover, such
a device opens the way for generating more general CV
states, by placing detectors at some of the outputs and
post-selecting a desired non-Gaussian state or even using
adaptive schemes. In principle, the scheme can be mod-
ified to a device capable of performing arbitrary multi-
mode Gaussian unitary operations, however such a device
will require in-line squeezing which is very demanding in
practice. Fast reconfigurability and appropriately placed
time delays on some modes can also allow us to use time
to encode larger states [53, 54].

Since the technology for implementing such a device is
readily available, we expect to see a practical demonstra-
tion of our scheme in the near future. Such a demonstra-
tion would be a significant milestone for CV quantum
information processing.
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Appendix A: Gaussian states and unitaries

An N mode Guassian unitary operation can be de-
composed into an N mode rotation followed by N mode
squeezing followed by N mode displacement [55]

UG([θ], [β], [α]) = D([α])S([β])R([θ]); (A1)

Here [α], [a†] denotes vectors with entries ak, a†k re-
spectively; The displacement vector [α] has N complex
entries αk representing the displacement of each mode;
The rotation matrix [θ] is an N ×N unitary matrix with
entries θk,l; and the squeezing matrix [β] is a complex,
symmetric N ×N matrix with entries βk,l. These oper-
ators can be written in Fock notation as

Displacement D([α]) = e[α]
T [a†]−[α]†[α]

Rotation R([θ]) = ei[a
†]

T
[θ][α]

Squeezing S([β]) = e[a
†]

T
[β][a†]−[α]T [β]∗[α].

A pure Gaussian state |G〉 is generated by
UG([θ], [β], [α]) |0〉, however since a rotation at most
adds a global phase to the vacuum state it is possible to
remove the first rotation step:

|G〉 = UG([θ] = 0, [β], [α]) |0〉 . (A2)

(A1) and (A2) imply a generic procedure for producing
any desired (pure) Gaussian state using a sequence of
Gaussian operations). Our goal is to show that this can
be done with only single mode squeezing initially as in
(1).

To bring the squeezing matrix into diagonal form
S([β1m]) (i.e a form that implies only one mode squeez-
ing) we use the following facts (see [8, 55]):

• R([ζ]))S([β]) = S([β′])R([ζ]) such that [β′] =

ei[ζ][β]ei[ζ]
T

, where T means transpose.

• It is possible to bring any symmetric matrix [β]
into diagonal form using the Takagi factorization,
i.e for any [β] there exists a unitary U such that
[β1m] = U [β]UT is a diagonal matrix with non-
negative entries.

From these facts it follows that we can write
UG([θ], [β], [α]) = D([α])S([β])R([θ]) to

UG([θ], [β], [α]) = D([α])R([ζ])S([β1m])R([ζ])R([θ])
(A3)

(see [56] for a more detailed derivation).
The above can be simplified further in the case of Gaus-

sian states since R([ζ])R([θ]) |0〉 is up to a global phase
the same as |0〉, which leads us to (1).

Appendix B: Approximate displacement

The scheme in fig 3 generates an approximate displace-
ment D([α]) as well as a permutation of the modes when
ηk is small enough. It is easier to see how well the approx-
imation, (2) works by writing Tk in exponential form:

Tk = Pk−1,ke
iδk−1,k(a

†
k−1ak+a

†
kak−1)ei(φk−φk−1)a

†
k−1ak−1

with Pk−1,k being the operator that swaps modes k − 1
and k, φk is the phase of αk and

√
ηk = sin(δk−1,k) =

αk

α0
∏k−1

m=1 Cos(δm−1,m)
, δ−1,1 = 0. Note that for simplicity

of the derivation we neglect any phases added by the
cross-coupling since these can always be corrected.
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Using the rules for switching the order of rotations and
displacements, we can rewrite the transformation

T1D0(α0)

= P1D0(e−φ1α0 cos δ)D1(α1)eiδ0,1(a
†
0a1+a

†
1a0)e−φ1a

†
0a0

= D0(α1)D1(e−φ1α0 cos δ)P1e
iδ0,1(a

†
0a1+a

†
1a0)e−φ1a

†
0a0

which can be done for all terms, so that

N∏
k=1

TkD0(α0) =D0..N ([α])× (B1)

DN

[
eiφNα0

N∏
k=N

Cos(δk−1,k)

]
N∏
k=1

Tk

where we use the ordering convention ΠN
k=1Xk =

XNXN−1...X1. It is possible to ‘push’ the permutations
to the left and get

N∏
k=1

Tk = P↑

N∏
k=1

eiδk−1,k(a
†
0ak+a

†
ka0)ei(φN )a†0a0 (B2)

Now taking |α0| >> 1 such that δk−1,k << 1 for

all k we can see that
∏N
k=1 TkR([θ])S([β1m]) |0〉 ≈

R([θ])S([β1m]) |0〉. With first order corrections be-

ing
∑
k δk−1,k(a†Nak−1)R([θ])S([β1m]) |0〉. These can be

treated as possible photon losses.
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