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ABSTRACT 
 

 A novel form of dosimetry using fluorophore-marked DNA fragments may provide a 

powerful platform for future high-sensitivity and spatially-resolved dose measurements of all 

radiation types. This thesis investigates the feasibility of DNA-based 3D fluorescence computed 

tomography in the context of oncological radiation therapy. A thorough computational model is 

developed with physical designs for a DNA phantom and readout apparatus. The dose 

reconstruction algorithm developed is similar to first-generation CT techniques and requires the 

collection of a fluorescence response for well-defined optical excitations. Numerical simulations 

indicate a promising agreement between the reconstructed dose profile and the true profile; 

however, the results generally suffer from systematic inaccuracies due to the spatial dependence 

of the detector cross-sections. To achieve performance comparable to other dosimetry CT 

techniques, future work must seek to mathematically correct this confounding phenomenon.   
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NOMENCLATURE 
 

Symbol Definition 

h  Plank’s Constant  [6.626*10-34  m2kg/s] 

c  speed of light in vacuum  [299,792,458 m/s] 

NA  Avogadro’s Number  [6.022*1023 mol-1] 

λ  wavelength  [m] 

t  time  [s] 

A  cross-sectional area  [m2] 

Q  quantum efficiency 

[C]  concentration  [mol/L] 

I  intensity  [W/m2] 

σ  absorption cross/section [cm2] 

μ  linear attenuation coefficient [cm-1] 

M  linear coefficient for dose vs. broken DNA  [2.7*10-3 μM/Gy at [C] = 0.5 μM] 

 

Acronyms 

DNA  Deoxyribonucleic Acid 

SSB  Single-Strand Breaks 

FAM  Fluorescein Amidite  Molecules 

BHQ  “Black Hole Quencher” [Molecules] 

PMT  Photomultiplier Tube 

CCD  Charge-coupled Device 

RMC  Royal Military College (of Canada) 

LINAC  Linear Accelerator (Radiation Therapy Platform) 
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CT  Computed Tomography 

MRI   Magnetic Resonance Imaging 

FRET  Förster’s Resonance Energy Transfer 

(wt)  “By Weight” 

3D  Three-Dimensional 

PETE  polyethylene terapthalate 

ADC  Analog-to-Digital Converter 

APD  Avalanche Photodiode 

DFT  Discrete Fourier Transform 

 

Miscellaneous 

Voxel   A cubical unit of finite resolution – the 3D analogue of a pixel 

Gray (Gy) SI unit for absorbed radiation dose: 1 Gy = 1 Joule radiation/1 kg matter 
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1.  INTRODUCTION 

 

 Radiation therapy, an essential component of cancer treatment, relies on the careful 

application of high-energy photons to kill cancerous cells at the tumour site while minimizing the 

dose absorbed by surrounding healthy tissues [1]. Oncological radiation treatment has evolved 

over the past several decades into a sophisticated, technology-driven process in which all aspects 

of dose planning and delivery are electronically controlled.   

 Modern medical linear accelerators (LINACs), as depicted below in Figure 1, represent 

the state-of-the-art in patient care [2].  Accelerated electrons are collided with a tungsten 

filament inside the machine head, producing a beam of high-energy X-rays through a 

bremstraahlung process [3]. This X-ray beam is then conditioned by a complex array of 

collimators, providing control over the beam topology [2]. A gantry allows the LINAC head to 

rotate 360 degrees around the patient, enabling the target site to be accessed from multiple 

angles. This combination of beam shaping and dose angle – along with the ability to modulate 

beam intensity – facilitates unprecedented optimization of dose delivery such that the damage to 

healthy tissue is minimized [2,3].   

 

Figure 1 – A modern LINAC for radiation therapy (a), and details of LINAC-based beam 

creation and conditioning (b).  [4] 

 

(a) 
(b) 
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 Patient-specific treatment plans are typically created with computer assistance, using 

images of the tumour site acquired through x-ray computed tomography (CT). The treatment 

process is a highly sophisticated endeavour, owing to the complexity of dose delivery and the 

number of programmable degrees of freedom. Comparison between actual dose delivery and 

planned dose delivery is therefore a necessary measure of quality assurance [2,5]. A common 

practice is to first test treatment plans on non-living targets, thereby allowing dose discrepancies 

to be identified and corrected.  Such targets are colloquially referred to as „phantoms‟. The 

phantoms typically contain materials that are susceptible to radiation-induced changes in their 

local optical properties [5]. Information about the delivered dose profile can then be extracted by 

a readout system employing conventional CT techniques. The acquisition of dose data from an 

irradiated structure is known as „dosimetry‟.  

 

Figure 2 – Example depicting the use of a jar-shaped phantom for aiding oncological LINAC-

based radiation treatment planning. This phantom has been placed within a head-shaped vessel 

that helps emulate the effect of surrounding tissues. [5] 

 

 This thesis seeks to investigate the feasibility of creating a 3D dosimetry platform (i.e. 

phantoms and an accompanying readout system) using a novel form of dose detection based on 

the radiation-induced fragmentation of DNA strands. Such a system must be capable of resolving 

both the magnitude and the spatial distribution of the delivered dose – a feat that has not 

previously been explored for a DNA-based platform. Given that performance will depend 

heavily on the underlying photochemistry, optics, and reconstruction algorithms, strong 
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emphasis is placed on the creation of a thorough computational model as a proof (or disproof) of 

the concept. Apparatus designs will support the simulation development and provide 

complementary information about anticipated costs, scanning time, and limitations in the 

physical implementation.  

 

DESIGN OBJECTIVES: 

 In the context of clinical use, the most important design considerations are accuracy and 

reliability as well as the safety of the user. Dosimetry platforms used for medical quality-

assurance purposes are assessed with criteria known as the “gamma map” [6].  To pass this test, 

more than 95% of the reconstruction voxels must match either the true dose intensity to within 

3% (in the case of low dose gradients) or the true spatial dose profile to within 3 mm (in the case 

of high dose gradients) [6]. Existing dosimeters are usually able to offer spatial resolutions of 2 

mm or less, with some systems achieving accuracies to well within 1 mm [2]. Given this, it 

would be reasonable to aim for a spatial resolution of 2 mm with a DNA-based system. During a 

session of radiation therapy, local dose levels typically range between one and two Grays. A 

Gray (Gy) is the SI unit for absorbed radiation dose, and is defined as the absorption of one Joule 

of ionizing radiation by one kilogram of matter (i.e. tissue) [2]. At the very least, a DNA 

dosimeter system should aim for a dose resolution of 0.05 Gy or better, permitting the dose scale 

to be quantized to at least 40 distinct states.  

 Secondary design considerations
*
 are ease of operation and scan time. Financial cost is 

also a significant consideration and will be analysed; however, it is not given the same level of 

importance as other design criteria for two reasons: 1) in the healthcare market, performance 

advantages tend to be more heavily weighted than cost; 2) the system‟s novel nature will make it 

more expensive than established alternatives a-priori.   

 

 

 

* A discussion of “social” or “environmental” factors is not applicable to this thesis topic in the usual sense, 

and therefore do not appear (there would be little to talk about, if anything).  
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2.  BACKGROUND & THEORY 
 

2.1 – The DNA Dosimeter 

 

 The term “dosimeter” broadly refers to any device that measures absorbed radiation dose 

through the interaction of incoming high-energy photons with a detection medium (i.e. a gas, gel 

or semiconductor) [7]. In practice these devices range from simple „proportional‟ counters for 

monitoring occupational exposures, to spatially-resolved configurations such as those used in 

radiation treatment planning. A research group at the Royal Military College of Canada (RMC) 

has recently developed a novel dosimetry technique in which DNA serves as the detector [7].  

 Short strands of DNA are augmented on either end by molecules with specific 

functionalities. The first of these is a fluorescein amidite molecule (FAM) that emits a 

fluorescence signal when optically excited. The spectral properties of this „fluorophore‟ are 

shown in Figure 3 below.  

 

 

Figure 3 – Absorption and Emission characteristics of the FAM used in DNA dosimetry [8]. The 

difference between the absorbed and emitted wavelengths is known as the Stokes Shift. 
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Attached to the opposite end of the DNA strand is a molecule known as a Black Hole Quencher 

(BHQ). This molecule couples to the FAM through an electric dipole interaction that suppresses 

the FAM fluorescence signal through a phenomenon known as Förster‟s Resonence Energy 

Transfer (FRET) [7,9]. The probability of FRET scales inversely with the sixth power of 

distance, much like the Van der Waals force.  

 A „single strand break‟ (SSB) occurs when a DNA strand is severed by radiation or 

radiation by-products such as free radicals [10]. With nothing anchoring them together, the two 

halves of the strand drift apart due to entropy effects, spatially separating the BHQ and FAM 

molecules such that the probability of FRET is greatly decreased. In this manner, a SSB is able 

to release a detectable fluorescence signal indicating that it has suffered radiation damage [7].   

 

Figure 4 – Illustration of the dosimetry mechanism. Unbroken DNA fragments are labelled with 

an optically-active, fluorescing ‘reporter’ molecule and a fluorescence-absorbing ‘quencher’. 

An electric dipole interaction (FRET) prevents the release of a fluorescence signal. When the 

DNA fragment is severed by radiation, the two ends drift apart due to entropy and the 

probability of FRET decays as 1/R
6
, enabling a detectable fluorescence response.  

 

 DNA is of particular interest as a dose-detecting medium due to its responsiveness to a 

wide variety of radiation types (i.e. other than ionizing radiation) as well as its clear correlation 

with biological damage [7]. The experimental group at the RMC found a linear relationship 

between the number of detected SSBs and the radiation dose that produced them, which makes it 

easy to relate changes in fluorescence response to relative changes in delivered dose [7,8,10]. 

Finally, experimental results indicated that the DNA may have unsurpassed sensitivity compared 

to other existing dosimetry mediums. Before investigating the feasibility of extracting dose 

information from irradiated DNA-based phantoms, it is first necessary to review the underlying 

principles behind CT reconstruction.   
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2.2 – Computed Tomography & the Radon Transform 
 

 At optical frequencies, photon attenuation is primarily attributable to Rayleigh scattering 

and photoelectric absorption [11]. For a beam of photons, the cumulative effects of all possible 

attenuation processes can be collectively encapsulated by a single linear attenuation coefficient 

„μ‟. If a beam with an initial intensity of I0 travels a distance „x‟ through a material with an 

attenuation coefficient „μ‟, then the final intensity of the beam is given by the Beer-Lambert law: 

I x = I0e−μx  

 Computed tomography (CT) techniques have traditionally taken advantage of the fact 

that the total attenuation of a beam projected through an object with locally-varying attenuation 

coefficients is given by the following line integral: 

𝐼

𝐼0
= 𝑒− 𝜇 𝑟 𝑑𝑟  

where “r” is a spatial coordinate [11,12].  

 In 1917, Johann Radon conceived of a compact mathematical representation of an image 

in terms of line integrals over a set of straight lines “L”: 

𝑅(𝐿) =  − ln  
𝐼

𝐼0
 =   𝜇 𝑟 𝑑𝑟

 

𝐿

 

This is known as the Radon transform, and implies that it is possible to mathematically find a 

function μ(r) that satisfies this relation for a known set of attenuated projections [11,12]. In other 

words, since μ(r) usually depends on material density and type, it is possible to reconstruct a 

cross-sectional image of an object from nothing more than attenuation measurements.  

 One way of determining μ(r) is through the use of the Fourier Slice Theorem. This 

theorem states that the Fourier Transform of R(L) at a specific projection angle yields a unique 

line in the frequency domain of the full 2-dimensional image [12]. Due to the linearity of the 

Fourier Transform, the frequency data from multiple projection angles can be used to sample the 

entire 2D frequency domain, which can then be transformed back to the spatial domain to yield a 

fully-reconstructed image [11,12]. This concept is illustrated in Figure 5.  

[12] 
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Figure 5 – Illustration of the Fourier Slice Theorem. The Fourier Transform of the projection 

data through an object at a specific angle yields a unique line in the 2D Fourier Transform of 

the total object. Attenuation data at multiple angular increments can thus be used to sample the 

total frequency space, which can then be subjected to an inverse Fourier Transform to yield a 

reconstructed cross-sectional image of the object.  Note that projections at angles beyond 180° 

begin to produce gratuitous results in the frequency domain.  

 

 The Fourier Slice Theorem is the backbone of CT techniques. One common 

implementation is known as the „back-projection‟, whereby the object is numerically divided 

into finite elements (pixels for a 2D slice and voxels for a 3D object). Attenuation data from 

multiple angles is then superimposed upon this grid and begins to resemble the object cross-

section as the sampling resolution increases [11,12].  
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3.  APPROACH & DESIGN 

 

3.1 –Literature Review 
 

 Background research was conducted into existing fluorescence and dosimetry CT 

techniques to gain useful insight into how potential solutions might be approached. A multitude 

of different methodologies were examined, the details of which are available elsewhere [13-16].  

In brief, many of these schemes used stochastic analyses relying on Monte Carlo methods or a 

computationally-intensive “Boltzmann Transport Equation”.  

 Techniques in optical dosimetry were also examined, due to their widespread use in 

radiation therapy. Optical dosimeters are often formed of gelatine structures laced with radiation-

responsive monomers [5]. Dose delivery stimulates a polymerization processes (due to initiation 

by free-radicals) that turns the gel optically opaque. The dose distribution can then be extracted 

by a form of standard CT that uses a cone-shaped beam instead of linear projections (thereby 

permitting faster readouts) [5].   

 Although effective in their specific applications, most of the surveyed methodologies are 

not amenable to a DNA-based platform. Reconstruction techniques based on the Boltzmann 

Transport equation require the specimen to be highly-scattering (i.e. a tissue), whereas this is not 

a valid assumption for a DNA dosimeter [16]. Furthermore, schemes based on Monte-Carlo 

reconstructions would require a robust way of determining signal origin and would lead to a 

highly complex apparatus and computational algorithm. Finally, cone-beam CT is only possible 

when attenuation is being measured (as opposed to a fluorescence response) [14]. Extracting 

information from a DNA dosimeter therefore requires a unique solution; albeit one that takes 

inspiration from existing techniques.  

 

3.2 – Proposed Solution 
 

 If a well-defined excitation beam is passed through a DNA dosimeter, then the resultant 

fluorescence signal will be directly proportional to the total radiation dose within the beam path. 
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Furthermore, if the beam shape is rectilinear, then a modified first-generation CT algorithm 

based on the Fourier Slice Theorem can reconstruct the dose distribution from increases in 

emitted fluorescence signal (rather than decreases in beam signal due to attenuation). This 

concept is illustrated in Figure 6.  Full 3D reconstruction would be done on a slice-by-slice basis 

along the length of the dosimeter, requiring a set of linear excitations through the phantom at 

angular orientations from 0° to 180° for each slice. Such a readout device requires a „stable‟ 

phantom, geometric simplicity, the capacity to rotate or translate the phantom, an appropriate 

detector array, and excellent control of the excitation beam.  

 

Figure 6 – (a) A series of fluorescence measurements are taken as a linear excitation beam is 

translated across the phantom. (b) The data obtained from multiple orientation angles is then 

combined to reconstruct the dose distribution via the Radon Transform/Fourier Slice Theorem.  

[Note: the Green ellipses within the phantom indicate an irradiated area.] 

 

 It is important to note two additional differences between the proposed solution and 

traditional attenuation-based CT. Since the fluorescence response is assumed to be emanating 

from SSB sources as a spherical flux of photons, the total fraction of this flux reaching the 

detectors will depend on the relative position of the sources. Secondly, there will be additional 

attenuation of the fluorescence signal as it propagates towards the detectors; this is also a 

(b) (a) 
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position-dependent phenomenon. The severity of the two effects will be investigated through 

simulation.  

 

3.3 – Phantom Design 
 

 Since phantoms designed for optical dosimetry are already in clinical use, it is reasonable 

to base the DNA phantom on existing practices. The phantoms employed in optical CT are 

comprised of a gelatine or colloidal suspension matrix laced with low levels of radiosensitive 

chemical species [17]. Colloidal suspension is achieved using a 30% silica-in-water solution. 

Once radiosensitive molecules have been added, a change in the pH or water content can cause 

the silicon to „self-attract‟ and effectively freeze-up the solution. Gelatine suspension is achieved 

using a collagen-derived protein that forms a three dimensional matrix at room temperatures 

[17]. The gel liquefies above a certain transition temperature, permitting it to be homogenously 

mixed with additives.  

 To decide between the two techniques, it is important to consider how the DNA dose 

sensitivity and fluorophore response are impacted by environmental factors. FAM quantum 

efficiencies as well as ionized free-radical production (and therefore DNA damage) have a 

significant dependence on solution pH [10]. Since silica solutions are known to suffer from pH 

instabilities, gelatine – which always has a pH of 7 – is the favourable choice.  

 Gelatine also allows for easy and reliable preparation.  The gel is heated up to 50 degrees 

Celsius to liquefy, and then is slowly allowed to return to room temperature. DNA can be added 

when the temperature reaches 32° C (i.e. normal internal body temperature), since the protein 

matrix does not begin to reform until roughly 28°C and below [17].  

 Completing the phantom design requires a choice of gelatine concentration, DNA 

concentration, and phantom shape. A 5% (by weight) solution of gelatine-in-water provides 

enough structure to ensure the DNA fragments remain spatially stable [17]. Higher gelatine 

concentrations would lead to unnecessary signal attenuation as well as undesirable changes in 

refractive index. DNA concentration must be chosen to balance signal size with response 

linearity. As DNA concentration increases, there is a higher probability of FAM-labelled SSB 
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fragments drifting too close to BHQ molecules and undergoing FRET, thereby confounding the 

linear dose vs. detected SSB relationship [7]. A DNA concentration of 0.5μM was recommended 

by the experimental group at the RMC [8,10]. Finally, the shape of the phantom was chosen to 

be an 8cm-diameter, 10cm-deep cylinder contained in a thin-walled polyethylene terapthalate 

(PETE) jar. This choice was made to emulate the optical CT phantom designs as closely as 

possible [5].  

 

3.4 – Excitation Beam 

 

SOURCE & SHAPE: 

 A 488 nm Argon-based laser would serve as an efficient excitation source since the FAM 

absorption peak sits at approximately 490 nm as shown in Figure 3. This source must be capable 

of pulsing the beam at a rate of up to 100 Hz (see discussion below). Beam size must be chosen 

based on an appropriate compromise between signal level, dose resolution and scanning time 

(see Section 3.6) – to this end, a beam width of 2 mm was selected. Using this beam size, an 

8cm-diameter phantom slice could be reconstructed using an angular step-size of 2 degrees and a 

planar step size of 2 mm, requiring a total of (80mm/2mm)*(180°/2°) = (40)*(90) = 3600 

measurements. Since reconstruction algorithms typically break the phantom into cubical voxels, 

it is preferable that the beam has a square cross-section as opposed to a circular one. Both cross-

sectional size and shape are easily conditioned through the use of an optical aperture.  

 

INTENSITY & DURATION: 

 Ideally, the intensity of the beam would be made as high as possible to maximize the 

measurable fluorescence response; however, a phenomenon known as photobleaching limits the 

amount of excitation light that can be used. Photobleaching refers to the self-destruction of 

excited fluorophores through chemical reactions with their environment, and is a probabilistic 

process. Hence, there is a statistical limit to the number of times a fixed quantity of fluorophores 

can be excited before significant degradation of their signal response occurs. Experimental 

results from the RMC indicate that signal degradation due to photobleaching should be 
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negligible (i.e. less than 2%) provided that fewer than 10
13

 excitation photons are used during 

slice reconstruction [18]. For a 2mm-wide beam at 488 nm, this is equivalent to 3600 pulses at 

100 mW and 28 ms in duration.  

 A second constraint on beam intensity comes from photodetector saturation, which poses 

a problem that is most pronounced when extremely sensitive devices are required. Unlike 

photobleaching, this does not necessarily mean that the total number of excitations must be 

limited. Rather, signal saturation can be prevented by spreading out the excitations over a longer 

period of time, i.e. decreasing the beam intensity and increasing the pulse duration. A more 

detailed discussion can be found in Section 3.5.   

 

PATH CONTROL: 

 Accurate reconstruction requires that the beam path through the phantom is well-

controlled. An obvious complication with a cylindrical phantom is that refraction can occur as 

the beam enters the dosimeter jar, making it difficult to achieve the desired excitations. The 

easiest solution is to surround the phantom in an „index-matching‟ tank, as is common practice in 

optical CT [5]. In such a setup, the excitation beam enters the tank at normal incidence and 

traverses a fluid with a refractive index matching the index of the phantom. 

 The index of refraction at 488 nm for a 5% (wt) gelatine-in-water solution is 

approximately ngel =1.345. A 10-12% (wt) propylene glycol-water mix would achieve an 

identical refractive index with minimal attenuation [5]. The PETE jar has a refractive index of 

njar = 1.575. Thus, provided that the dosimeter PETE jar is kept extremely thin, the excitation 

beam would experience negligible bending as it passed from the tank fluid into the phantom and 

out again, regardless of the angle at which it hits the dosimeter jar.  

 

3.5 – Detector Selection & Electronics 
 

 Many different photodetector technologies exist on the market, with an immense variety 

of applications. Some of the most common devices are described below: 



13 

 

 Photodiodes are comprised of n-type and p-type semiconductor layers that are biased to 

form a depletion region [19]. If an impingent photon possesses energy greater than the diode‟s 

semiconductor band-gap, its absorption will produce an electron-hole pair that is subsequently 

turned into a photocurrent by the depletion region‟s built-in electric field [19]. Photodiodes 

benefit from high quantum efficiencies, good linearity, and low costs, but have small areas and 

are generally unable to resolve low light levels (i.e. hundreds of photons). Better sensitivity can 

be achieved using avalanche photodiodes (APDs), but at a significant increase in cost.  

 

Figure 7 – Illustration of photodiode operation depicting device construction (left) and the 

semiconductor band structure (right). [19] 

 

 Charge-coupled devices (CCDs) are arrays of semiconductor pixels that accumulate a 

photoelectron charge upon illumination [20]. These charges can be multiplexed through voltage 

amplifiers to readout electronics. CCDs thus behave as an electronic camera, with a spatial 

resolution of up to 1.1 μm and typical quantum efficiencies of 70%. Low-light applications 

typically employ fast gating and thermoelectric cooling [20].  Due to their small size, CCDs 

often require optical focusing.   

 Photomultiplier tubes (PMTs) achieve detection through the photoelectric effect, 

whereby impingent photons eject electrons from a photocathode material [21]. These 

photoelectrons then enter a cascade of high-voltage dynodes, producing an avalanche effect 

capable of amplifying the initial photocurrent by 6 to 12 orders of magnitude. PMTs are thus 

best-suited for applications involving low-intensity (or even single-photon) signals.  
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Figure 8 – Schematic showing the basic features of a PMT. [21] 

 

ESTIMATING THE SIGNAL LEVEL: 

 The optimal choice of photodetector type is largely dependent on anticipated signal 

levels. A preliminary calculation of the fluorescence response is therefore a necessary first-step 

in narrowing down the number of feasible options.  

 Typical dose-readout experiments conducted by Wood and colleagues at the RMC 

employ a 10-watt pulsed excitation beam that is active for a total of 16 μs over a 16 ms period 

[8,10,18]. Using these parameters and the equations found in Section 4 for a 2 mm
3
 voxel and an 

excitation wavelength of 488 nm, an estimated 74,386 fluorescence photons will be re-emitted 

from an excited voxel per Gray of absorbed radiation.  Assuming that these photons are emitted 

as a uniform spherical flux and that they do not undergo significant attenuation, only ~ 15% will 

reach an intermediately-sized detector surface (i.e. for a detector cross-section of 9π cm
2
 placed 5 

cm axially from the source). Therefore, to achieve the desired dose resolution of 0.05 Gy, the 

chosen detection system must be capable of creating a distinct signal from roughly 300 to 600 

impingent photons that arrive over a 16 ms span.  

 Based on the above discussion, photomultiplier tubes are best-suited to this task due to 

their single-photon sensitivities, low noise levels, and relatively large detecting surfaces. High 

sensitivity avalanche photodiodes or CCD cameras would suffer from decreased signal levels 

due to their small cross-sections, which is further exacerbated by their significantly higher noise 

floors. Since the fluorescence response is uncollimated, no satisfactory optical setup could be 
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conceived that would allow a significant fluorescence signal to be focused onto the active areas 

of either device.  

 Furthermore, a price comparison indicates that there is no real cost advantage to using 

APDs or CCDs as opposed to PMTs. Hitachi offers a 1.69 cm
2 

fluorescence microscopy CCD 

module with high sensitivity at a cost of $1000 to $1500 [22]. APDs with an active area of 0.5 

cm
2
 and satisfactory sensitivity specifications are listed by DigiKey at prices approaching $1000 

[23]. For comparison, single PMTs without any auxiliary electronics are typically listed at 

around $500, and can have active areas between 20 cm
2
 and 95 cm

2 
[21]. 

 The high voltages (1500-2000 V) required for PMT operation require special safety 

precautions. To minimize the potential for accidental contact, protective covers will be installed 

over all live high voltage components to electrically isolate them from the user.  

 

SELECTING A PMT: 

 PMT performance is largely dependent on the choice of photocathode material, which 

determines the sensitivity, quantum efficiency, and linearity of the detector as a function of 

wavelength [21]. Photocathode materials are typically categorized into families of response 

curves, such as those shown for transmission and reflection mode PMTs in Figures 9 and 10 

below.  Although the FAM emission spectrum is peaked at 520 nm, its width is spread out 

between 500 and 600 nm. It is therefore desirable that the PMT response curve be both high and 

flat in this region. A flat response helps ensure that all detected photons produce equal output 

signals; however, response curvature and statistical variations can be accounted for with proper 

calibration. From Figures 9 and 10, the most desirable characteristics correspond to the 555U, 

650S and 502K curve types. 555U and 502K employ multi-alkali photocathodes, whereas 650S 

uses GaAs(Cs). Although reflection-mode curves possess more desirable characteristics, they are 

typically only found in the „side-on‟ variation of PMT in which the optical window is the side of 

a cylinder rather than a flat circle [21]. Thus the 555U and 650S curves generally do not meet the 

geometry requirements of the reconstruction scheme.  
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Figure 9 – Wavelength characteristics of reflection-mode photocathodes. The bandwidth of 

interest has been highlighted, and the curves of the top two performers have been coloured green 

and red. [21] 

 

Figure 10 – Wavelength characteristics of transmission-mode photocathodes. The bandwidth of 

interest has been highlighted, and the curve of the top performers has been coloured red. [21] 
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 Using the response curves as a starting point, a search of the product catalogue of PMT 

manufacturer Hamamatsu yields two potential candidates [24,25]. Table1 compares the 

specifications of both tubes.  

Table 1 – Comparison of key characteristics between two PMT candidates 

 (averaged between 500 nm and 600 nm) 

Product Name Hamamatsu R943-02 Hamamatsu R1513 

Photocathode Material GaAs(Cs) Multialkali 

Detector Diameter 51 mm 127 mm 

Quantum Efficiency ~15% ~10% 

Radiant Sensitivity (mA/W) 70 maximum, 60 minimum (∆=10) 55 maximum, 30 minimum (∆=25) 

Current Gain 5.5*10
5
 3.3*10

5
 

Max cathode current (nA) 1 0.3 

 

As inferred from Table 1, the large cross-section of the R1513 PMT more than compensates for 

its lower quantum efficiency, but it is inferior to the R943-02 in terms of response linearity and 

maximum cathode current. Generally a lower max cathode current would require the laser 

excitation pulses to be of lower intensity and greater duration, which can significantly increase 

the total reconstruction time. However, if the excitation pulses are100 mW and 28 ms (see 

section 3.6) then neither PMT is saturated and both are therefore viable candidates. A computer-

based numerical simulation would provide a clearer assessment of which option is preferable. In 

the meantime, the R943-02 will be considered the PMT of choice.  

 

ELECTRONICS MODULES: 

 High PMT gain and good sensitivity are not enough to ensure that the minimum dose 

resolution is measurable. Obtaining output levels manageable by an analog-to-digital converter 

(ADC) requires the use of auxiliary electronics. Assuming that each excitation pulse is at 100 

mW and is 28 ms in duration, the system must be designed to resolve a minimum of 500 incident 

photons (i.e. representing the desired 0.05 Gy dose resolution threshold for a single voxel) as 
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well as a maximum of 800 000 photons (i.e. representing a beam cutting through the entire 

diameter of a phantom that has been uniformly dosed with 2 Gy). In general, this can be 

achieved by employing either a photon counting system (Figure 11) or an integrating charge 

amplifier (Figure 12).  

 

 

Figure 11 – Overview of a standard PMT photon-counting system. [26] 

 

 

 

Figure 12 – Simplified schematic of an integrating charge amplifier. The magnitude of the 

voltage response is set by the capacitance Cf. The larger the time constant τ =CfRf , the more the 

output pulse will resemble Qp/Cf. [21] 
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A charge amplifier is the favoured option due to its relative simplicity and reduced cost. For a 

pulse of charge Qp emerging from the PMT anode, the impulse response of this circuit is given 

by the following relation [21]: 

 Vout  =   
Qp

Cf
e
−t
τ   

where τ = CfRf ≡ time constant 

Provided the time constant is made to be quite large, then the amplifier output will begin to 

resemble the total accumulated charge divided by the capacitance Cf. This output can be sent 

through an additional amplifier and into a triggered sample-and-hold circuit for an ADC. To 

prevent overlap between excitation pulses, the accumulated charge can then be shunted with a 

switched circuit employing a much smaller time constant. With a PMT having a quantum 

efficiency of 0.15 and a gain of 5*10
5
 (such as the Hamamatsu R943-02), a 1 nF capacitance 

would produce the following voltage outputs: 

For the minimum signal (~500 photons): 

 Vout  =
 echarge   gain (Nphotoelectrons )

Cf
=

 1.6 ∗ 10−19  5 ∗ 105 (0.15 ∗ 500)

 1 ∗ 10−9 
= 0.006 V 

For the maximum signal (~800,000 photons): 

 Vout  =
 1.6 ∗ 10−19  5 ∗ 105 (0.15 ∗ 800000)

 1 ∗ 10−9 
= 9.6 V 

This is easily resolvable with a 16-bit ADC (since by distributing 2
16

 = 65,536 states between 10 

V and 0 V, the quantization unit is 0.000153 V), 

 It is also good practice to gate the PMT to prevent excess light levels from degrading its 

performance (i.e. such as when the PMT is exposed to background light during the 

insertion/removal of a phantom). This can be done with an external circuit that reverse-biases the 

photocathode with respect to the dynode array, preventing any electrons from reaching the 

amplifier cascade [21]. The bias is then removed by a gate pulse that allows the PMT to operate 

normally during the pulse duration. The gating signal can have a pulse width as small as 100 ns 

and a frequency as high as 10 kHz [27].  
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 PMT manufacturers often supply electronics packages with built-in functionalities that 

include circuits such as those described above as well as a high-voltage power supply. For 

example, the Hamamatsu H11526-20-NF series module would be perfect for this application 

except for the fact that the active PMT area is too small [27]. Such modules can cost anywhere 

between $2000 and $3000.  

 

OTHER CONSIDERATIONS: 

 Any scattering of the excitation beam into the PMTs will saturate the fluorescence 

measurements, due to the high sensitivities involved. Due to the fact that fluorescence lifetimes 

are typically between 1 and 10 nanoseconds, it would be infeasible to eliminate potential laser 

scatter through electronic gating, even if the total excitation energy was condensed into an 

extremely short pulse. It is therefore necessary to use passive thin-film filters to completely 

eliminate the 488 nm excitation light.  

 Such functionality can be achieved using a “496 nm blocking edge Brightline Long-pass 

filter” available from Semrock (part # FF01-496/LP-25)  [28]. This filter allows wavelengths of 

500 nm and greater to pass through with more than 98% transmission, while blocking 

wavelengths below 496 nm (transmission < 0.001%). A 32 mm
2
 filter costs $483, but customized 

sizes are available. Obtaining a custom-made 50 mm
2
 filter for a R943-02 PMT would cost an 

estimated $1000.  

 

3.6 – Final Design 
 

LAYOUT & MECHANICS: 

 The physical design of the readout system evolved through many stages of revision. An 

early approach sought to use CCD arrays to capture additional spatial information – at the time it 

was thought that the spatial resolution of the CCDs could be used to correct any geometric 

discrepancies entering the CT reconstruction. This initial concept is displayed in Figure 13.  
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Figure 13 – Views of an earlier concept that employed CCD arrays and also permitted the 

measurement of beam attenuation as part of a calibration procedure. In this abandoned model, 

the excitation laser was given two degrees of freedom, and the phantom only moved during 

rotation. The final design is shown in Figures 14-16.  

 

 Eventually, an approach was formulated to establish as much geometric symmetry as 

possible about the slice plane of interest, making the system easier to computationally model. As 

is emphasized in Figure 18 (Section 4), the use of two PMTs provides greater cross-sectional 

symmetry than a single detector. To avoid complications brought on by refraction, the detectors 

and optical filters are placed as flat against the tank as possible. The tank was made more 

compact to maximize the cross-sections of the PMTs with respect to sources of fluorescence.  

 There are several ways of implementing the three degrees of freedom required by a 3D 

CT scan. For cost and reliability, the most desirable option is one with a minimum of moving 
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parts and the highest level of simplicity. The rotational degree of freedom can be achieved by 

using a servo-motor attached to the bottom of the tank lid which clamps around the phantom jar. 

This is seen in many readout systems for optical dosimetry [5]. The excitation beam can be 

panned across the phantom using a small 90° mirror mounted on a miniature track, as detailed in 

Figures 14 through 16. This allows the laser source to remain stationary. Lastly, the ability to 

vertically shift between phantom „slices‟ can be accomplished by mounting the matching tank 

onto a movable, servo-driven platform.  

 

 

 

Figure 14 – Functional details of the proposed readout apparatus. The dosimeter jar has been 

artificially tinted green for visual contrast. A rotating clamp matched to the dimensions of the 

phantom jar is attached to the bottom of a removable lid. The tank is filled with an index-

matching solution of propylene glycol and water. Thin optical filters are placed immediately in 

front of the PMTs to prevent signal contamination from scattered laser light. Additional views 

are depicted in Figures 15 and 16. 
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Figure 15 – The final physical layout of the proposed DNA dosimetry readout system. The image 

on the left shows a view from the front, while the image on the right depicts a view from behind 

the apparatus. Prior to operation, an opaque case is fit into the base from above, to protect the 

measurement system from light contamination and to prevent accidental exposure to laser 

radiation. The base of the apparatus measures 44 cm x 22 cm in dimension.  

 

 

Figure 16 – Top-down view of the apparatus depicting a measurement in action. The tank lid has 

been removed to show the fluorescence response. The mirror pans left and right to translate the 

beam across the phantom. Note that in normal operation the apparatus would be covered in an 

opaque case that fits into the groove around the base periphery.  
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OPERATION: 

 A control system is required to ensure proper coordination between degrees of freedom 

(i.e. phantom rotation, mirror translation), excitation pulses, and sensor gating. Precise timing is 

critical due to the short excitation times (100 mW for 28 ms). These excitation parameters were 

chosen to maximize the total fluorescence signal while keeping the total scan time as short as 

reasonably possible.  

 One envisioned mode of operation is depicted in Figure 17 below. The mirror translates 

continuously while the laser beam is pulsed for a 28 ms period every 56 ms
*
. This requires a total 

of 2240 ms for each angle. For a total of 90 angular increments, the total time to scan a single 

slice is 3.36 minutes. Consequently, scanning a full 10 cm long phantom requires (100 mm/ 

2mm)x(3.36 minutes/slice) = 168 minutes = 2.8 hours. 

 

Figure 17 – Graphical display of the coordination between beam position and phantom angle 

during a slice scan.   

 

*
 Note the numerical simulation will differ from this in that it resembles a saw-tooth function; the scan always 

starts on the same side of the phantom. 
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ESTIMATED COST-BREAKDOWN: 

 Being a novel technology, the dual-labelled DNA fragments that serve as the dosimetry 

mechanism are fairly expensive. The supplier, Biosearch Technologies, sells the material at a 

cost of $365 per micromole [30]. Since each phantom is roughly 0.5 L in volume and contains a 

DNA concentration of 0.5 μM, a total of 0.25 μmol is required per phantom. Allotting $10 for 

the PETE jar, each phantom will thus cost roughly $100. This price expected to decrease within 

the next several years.  

 The anticipated costs involved in creating a readout apparatus are shown in Table 2, 

based on rough quotations available from product suppliers [24,25,27,30,31].  

 

Table 2 – Anticipated Cost Breakdown for DNA Dosimeter Readout Apparatus 

ITEM/COMPONENT ESTIMATED COST 

2 Hamamatsu PMTs + Electronics Modules $5000 

2 Semrock Optical Filters (FF01-496/LP-25) $2000 

Programmable Logic Controller $400 

16-bit ADC $120 

Readout Assembly (Platform & Servos) $3000 

 TOTAL $10520 

 

Note: The Argon laser source has not been included; potential prices range from $1000 to 

$10000 [32].  
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4.  SIMULATION & NUMERICAL MODEL 
 

 A MATLAB-based simulation package was designed to emulate the physical dosimeter 

readout as realistically as possible, focusing on a single 2D slice of a 3D phantom. Such a 

computational model is pivotal in establishing the feasibility of the proposed solution, and also 

serves as a basis for conducting quantitative evaluations of different design parameters (such as 

PMT model, beam intensity, etc). The code includes the option of viewing the simulated 

reconstruction process in real-time. A brief description of each simulation module follows. 

 NOTE: Recorded examples of the simulator in action can be found at the following URL: 

 http://www.youtube.com/watch?v=1FHVSZGmbks 

 Video Title: “Computed Tomography with a DNA Phantom” 

 

GRID CONSTRUCTION: 

 Inputted dose distribution patterns are automatically truncated to fit the dosimeter jar 

size, and are subsequently mapped to a finite-element (FE) grid. By default, the generated grid 

size automatically matches the resolution of the dose image (albeit the reconstruction resolution 

is still determined by the excitation beam width).  

 

CREATION OF LOOK-UP TABLES: 

 In advance of the simulation, the following geometry-dependent quantities are 

numerically calculated at periodic locations along the FE grid: 

1. Detector cross-section – this will determine the fraction of fluoresced SSB photons that 

can reach either photodetector from the site of emission. Due to the geometry of the 

apparatus and detectors, this can be achieved by computing the solid angle subtended by 

the circular PMT faces [33]. The spatial variance of detector cross-section will have an 

impact on the reconstruction quality.  

 

http://www.youtube.com/watch?v=1FHVSZGmbks
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Figure 18 – Combined detector cross-sections as a function of fluorescence source for (a) the 

R943-02 PMT [51 mm diameter] and (b) the R1513 PMT [127 mm diameter]. The scale used 

represents the fraction of generated photons than can reach the detectors based on geometry 

considerations alone (not taking attenuation into account). 

(a) 

(b) 
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2. Average path length through phantom – this allows an average signal attenuation to be 

determined. The computation is again made possible by the apparatus geometry, and is 

achieved by integrating over all paths from the point of emission to the detector‟s 

projection onto the phantom jar and then dividing by the area of integration.   

 

3. Average path length through matching tank – this is similar to #2, but follows from the 

subtraction of #2 from the average path length to the detector.  

Since every FE voxel at any angular orientation can be mapped to a particular spot in the 

detectors‟ reference frame, the use of pre-calculated lookup tables reduces the simulation‟s total 

computational time by more than a factor of fifty.  

 

GENERATION OF EXCITATION BEAM: 

 Laser excitation is simulated in the reference frame of a stationary phantom – thus the 

beam pans and rotates across the FE grid according to the specified angular and translational 

step-sizes. For each coordinate in the Radon Transform (i.e. F(θ,s) ), the beam determines which 

of the FE voxels have been „excited‟.   

Note: It was originally thought that beam attenuation would also be measured; thus, this 

algorithm keeps track of the attenuation order and allows ‘absorbed’ photons to be subtracted 

from the beam. 

 

VOXEL RESPONSE: 

 Each voxel that is „excited‟ produces a fluorescence response based on a number of 

factors including dose level and beam intensity. 

 From elementary physics and unit analysis, the total number of photons passing through a 

voxel of side-length A
1/2

 is given by [11,12]: 

Ф =  
λ

hc
  I  A  t  
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Using the Beer-Lambert Law, the fraction of impingent photons absorbed by the FEM molecules 

within a voxel is given by: 

γ = 1 −  e
−  

 C NA
1000

σFAM   A
 

Where σFAM = 2.09152*10
-16

 cm
2
 for a 0.5 μM solution. 

Using the empirically-determined linear correlation between broken DNA concentration and 

absorbed radiation (M = 2.7*10
-3

 μM SSBs per Gy at [C] = 0.5 μM ), and assuming that the 

statistics of photon absorption/emission evenly distributes the photons among active 

absorbers/emitters, the number of re-emitted stokes-shifted photons can be determined: 

number of absorbed photons ≡  α 

∴  α =  γФ 

number of emitted photons ≡  ε 

ε =  
SSBs

Total # of DNA Strands
   fluorescence quantum efficiency  α  

∴ ε =  
M

 C 
  dose  QFAM   α  

Where QFAM = 0.7 for at pH ~ 7 (i.e. a gelatine phantom solution) 

Note: The coded algorithm also allows the effects of photobleaching to be accounted for, based 

on the probability of damage per excitation. This functionality will not be discussed further, but 

remains available for use in investigating the trade-off between beam intensity and 

reconstruction quality.  

 

PHOTON ESCAPE: 

 Based on the number of emitted fluorescence photons from each excited voxel, this 

module computes the total number of photons that reach each detector after taking geometric 

cross-sections and signal attenuation into account. The previously-generated lookup tables are 

used.  

 



30 

 

DETECTOR RESPONSE: 

 An output voltage level is produced based on the specific characteristics of the chosen 

PMT and control voltage. A more sophisticated model incorporating specific nonlinearities, 

noise levels and statistical fluctuations was intended, but was not completed due to time 

constraints. The measured „Radon Transform‟ is constructed based on the voltage level for each 

increment of angle (θ) and planar position (s).  

 

IMAGE RECONSTRUCTION: 

 This module emulates the actual post-processing required by the readout apparatus to 

reconstruct the dose profile from the measured detector outputs. To do this, it first applies a 

digital filter to the raw Radon Transform to remove the radial convolution (i.e. blurring) that is 

inherent in a pure back-projection. It then converts the filtered Radon Transform to image space 

using nearest-neighbour interpolation.  

*Note: the reconstructed images are normalized based on the maximum FE pixel value. To 

obtain output values that precisely correspond to dose level (in Grays) would require an 

empirical calibration scheme.  This should be straightforward, but is not discussed in the present 

work.  
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5.  POST-PROCESSING OPTIMIZATION & RESULTS 
 

 Digital filter design is an important factor in reconstruction quality. A raw back-

projection tends to „oversample‟ voxels near the centre of the image, resulting in a blurred 

reconstruction. In terms of digital filtering, this is equivalent to a “1/R” convolution – where „R‟ 

represents the distance from the image centre [11,12]. Correcting this effect requires the 

oversampling to be „inversed‟ by adjusting the frequency spectrum of the Radon Transform. To 

achieve this, the fluorescence variation at each beam position (“S”) and incremental angle (“θ”) 

is transferred to the frequency domain using a one-dimensional discrete Fourier Transform 

(DFT). The frequency spectrum is then modulated with an envelope called a filter function 

before being returned to the spatial domain by an inverse DFT.  

   

Figure 19 – An example of a Radon Transform before (left) and after (right) digital filtering. 

  

 The most mathematically obvious filter for correcting the (1/R) convolution is a ramp 

function of the form H(ω) = π|ω|, where ω refers to the frequency [11,12]. In practice, however, 

this filter function introduces unwanted artefacts into the reconstruction image. A custom filter 

function was designed to address this, with the help of the MATLAB simulation. The optimal 

solution was found to be a modified “Shepp-Logan” filter of the following form: 

  𝐻 𝜔 =

 
 
 

 
 0.1 𝑖𝑓  𝜔 ≤

0.01

2𝜋 

𝜋2 𝜔 𝑠𝑖𝑛𝑐  
𝜔

𝜔𝑚𝑎𝑥
  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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HIGH 

LOW 

The impact of different filtering schemes on the final reconstruction is illustrated in Figure 20. 

                 

             

            

Figure 20 – The effect of digital filtering on dose reconstruction: 

 
(A) shows a map of the true 2D dose distribution, which resembles a common 7-beam treatment for prostate cancer.  

(B) depicts the unfiltered CT reconstruction of (A).  

(C) depicts a ramp-type filter function.  

(D) shows a reconstruction that has been digitally filtered with the ramp function shown in (C).    

(E) depicts the optimized filter based on a modified Shepp-Logan function.  

(F) shows a reconstruction that has been digitally filtered with the function shown in (F).  

All colour scales are relative normalizations of the dose intensity.  

(A) (B) 

(C) (D) 

(E) (F) 
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HIGH 

LOW 

R943-02 
(51 mm 

diameter) 

R1513 
(127 mm 

diameter) 

True 2D 

Dose Dist. 

 The simulation permits exploration of several other design parameters. In reconstructions 

modelled using the R943-02 Hamamatsu PMT (51 mm diameter), there tends to be additional 

blurring near the centre of the image as opposed to the larger R1513 PMT (127 mm diameter). 

This evidences the extent to which detector cross-sections impact the reconstruction quality as 

shown in Figure 21 below. In contrast, contrary to expectations it was found that the attenuation 

of fluorescence photons by the BHQ and gelatine molecules in the phantom had negligible 

impact.   

                          

                      

                       

 

 

Figure 21 – Performance comparisons between the 51 mm R943-02 PMT (top row), the 127 

mm R1513 PMT (central row) and the true 2D dose distribution (bottom row) for two 

arbitrary dose patterns. The optimized filter function was used. All colour scales are relative 

normalizations of the dose intensity. 
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 Figure 22 provides an indication of the accuracy to which reconstruction is achieved. 

Dose distributions were normalized such that a value of 1 was assigned to the highest dose level. 

The error represents the difference between the normalized doses at each pixel. Most of the 

higher dose features have an absolute error that is less than 0.15 on the normalized scale. This is 

reasonably low, but could use significant improvement.  The largest errors occur in regions of 

steep dose gradient (i.e. sharp transitions), which suggests that the majority of these errors may 

be attributable to slight spatial imprecision inherent in the reconstruction.  

       

Figure 22 – Error maps depicting the normalized absolute error between a true dose profile and 

its corresponding reconstruction. The image on the left is for a reconstruction of the dose profile 

shown at the bottom of the second column in Figure 21. The image on the right originates from 

the dose pattern featured in Figure 20(A). 

 

 While the reconstruction results generally look quite promising, it is clear that a 

correctional algorithm is necessary to account for the spatial variations in detector cross-section. 

The highest dose intensities suffer from an inwards „smudging‟. Sometimes these effects are 

manageable, as is the case for the reconstructions in Figure 21. Elsewhere they are far too severe. 

Figure 23 shows some results for a common dose pattern known as the 4-field “box” – fields 

equally weighted at gantry angles of 0, 90,180 and 270 degrees. Using the larger PMT improves 

the situation but does not solve the underlying problem.   
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HIGH 

LOW 

True 2D 

Dose Dist. 

R1513 
(127 mm 

diameter) 

R943-02 
(51 mm 

diameter) 

                   

                

                                                                   

Figure 23 – Comparative results for a 4-field box pattern that is centred (left column) versus 

offset (right column). The inwards smudging effect is most pronounced at high dose intensities, 

and clearly worsens when a smaller PMT is used, suggesting an intimate relation with the 

optical geometry.  

 

 NOTE: The simulation resolution was increased beyond the intended 2 mm
2
 design resolution. 

 

 

“Smudge” effect 

becomes more 

pronounced for 

smaller detector 

cross-sections. 
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6.  CONCLUSIONS & RECOMMENDATIONS 
 

 The findings of this thesis indicate that DNA-based dosimetry is indeed amenable to CT 

techniques. The reconstruction quality does not match the capabilities of more mature dosimetry 

platforms; however, what has been achieved thus-far appears promising, considering that this is 

the first time such functionality has been demonstrated with DNA. It is therefore recommended 

that this work be continued.  

 Reconstruction time may prove to be one of the biggest disadvantages of this technique, 

as the proposed scheme requires an estimated 2.8 hours of measurement time to reconstruct an 

8cm diameter, 10cm long phantom whereas many optical dosimeters can produce these results 

within 10 to 20 minutes [5]. Decreasing the necessary scan time would come at a cost of 

reconstruction quality.  

 Significant improvements could be made to the post-processing algorithm to account for 

the confounding effects of variable detector cross-sections. This might be achieved by 

multiplying the fluorescence response by a weighting function that depends on beam position. 

The shortcomings of the present scheme cause an inward radial smudging that greatly distorts 

features near the periphery of the phantom.  

 If attempts at finding such a correction are successful, then in principle this CT technique 

should be on par with the spatial resolutions enjoyed by more established dosimeters. Following 

this, attempts could be made to refine the dose sensitivity by re-examining several parameters 

including beam intensity, PMT type, and photon-counting techniques. The computational model 

should then be improved to better-encapsulate statistical effects, such as variations in the Stokes-

shifted wavelengths of the fluorescence photons and the statistics of PMT response.  
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8.  APPENDICES 
 

The following is a transcript of the MATLAB code used to numerically model the CT design.  

 

function [ g , gf, svar,thetavar,U, V, InCircle,input_dose_level] = ScanMaster( 

dose_img, theta_step, s_step, plot_toggle) 
%(C) 2012, Ryan Marchildon 

  
%dose_img is a greyscale image file, created with "ExtractDoseData.m", 
%which is an NxN matrix where each pixel has a magnitude corresponding to 
%the dose intensity (greater magnitude = greater dose). The number of pixels 
%comprising this image will automatically define the grid size of the 
%simulation.  

  
[Num, ~] = size(dose_img); 

  
%to translate this into an actual dose value in Greys, an internal metric 
%is defined immediately below: 

  

  

  
%---------------------INTERNALLY SET VARIABLES----------------------------- 
metric = 100;% <- internally user-defined; subject to change! 

  
%LASER PARAMETERS 
beam_width = 2; %defines width of excitation laser beam in mm 
I = 10; %defines excitation beam intensity in Watts 
T = 16*10^(-6); %defines total excitation time per (s,theta) in seconds 

  
%GEOMETRIC PARAMETERS 
D = 80; %phantom jar diameter, in mm 
l = 55; %distance from centre of phantom to centre of detectors, in mm 
Q = D/2; 

  
%PHOTON DETECTOR PARAMETERS 
R = 63.5; %radius of photon detectors, in mm 
PMT_QE = 0.10; %average PMT Quantum Efficiency at wavelengths of interest 
PMT_gain = 3.3E5; %total cathode-to-anode charge amplification 
AmpCapacitor = 10^(-9); %1 nF capacitance 

  
%DNA PARAMETERS 
DNA_concentration = 0.5; %DNA concentration in phantom, micro Molars 
DNA_concentration = DNA_concentration*10^(-6); %convert to mol/L 
DNA_FAM_MA = 54700; %defines Molar Absorptivity Coefficient[1/(M*cM)] 
DNA_FAM_CS = 3.82*10^(-21)*DNA_FAM_MA; %defines Cross-Section [cm^2] 

  
%ATTENUATION PARAMETERS 
mu_phant = 0.15; %<- temporary! 0.15 cm^-1 good estimate (T Olding) 
mu_tank = 0; %<- probably a good approximation 
%-------------------------------------------------------------------------- 

  

  

  
%plot_toggle is a logical 1 or 0, 1 meaning that figures will be shown 
%realtime during reconstruction at a cost of computing speend.  
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if (plot_toggle ~= 0 && plot_toggle ~= 1) 
    error('plot_toggle must be logical 1 or 0'); 
end 

  

  

  
%--------------------------SIMULATION SETUP-------------------------------- 
for (n = 1:1:Num) 
    for(m = 1:1:Num) 

         
        %note: readout from image file is in type: int, so if we try to 
        %divide by the metric it will round to the nearest integer. We must 
        %convert the number to a floating point first! 
        input_dose_level(n,m) = double(dose_img(n,m))/metric; %now in Gy 
    end 
end 

  
%Now set up the coordinate system attached to the dose profile 
%U corresponds to X coordinates, V corresponds to Y coordinates 
[ cell_length , U, V, InCircle] = GridGen2D( D, Num ); 

  

  
%initialize photobleach matrix 
[~,numtemp] = size(U); 
photobleach(1:numtemp,1:numtemp) = 0; 

  
%initialize RECONSTRUCTION MATRIX (for animation): 
g(1:numtemp,1:numtemp) = 0; 

  
%initialize Fourier-space reconstruction array============================= 
num_theta = 0; 
for (theta=0:theta_step:180-theta_step) 
    num_theta = num_theta + 1; 
end 
theta_tot = num_theta; 

  
num_s = 0; 
for (s=(-D/2):s_step:(D/2)) 
    num_s = num_s + 1; 
end 
s_tot = num_s; 

  
%========================================================================== 

  
%initialize animated figures: 
scrsz = get(0,'ScreenSize'); 
if (plot_toggle == 1) 
fig_laser = figure('Color','white','Toolbar','none','Position',[scrsz(3)/100 

scrsz(4)/1.9 scrsz(3)/2.1 scrsz(4)/2.2]); 
fig_recon = figure('Color','white','Toolbar','none','Position',[scrsz(3)/1.95 

scrsz(4)/1.9 scrsz(3)/2.1 scrsz(4)/2.2]); 
fig_radon = figure('Color','white','Toolbar','none','Position',[scrsz(3)/100 

scrsz(4)/23 scrsz(3)/2.1 scrsz(4)/2.2]); 
fig_orig = figure('Color','white','Toolbar','none','Position',[scrsz(3)/1.95 

scrsz(4)/23 scrsz(3)/2.1 scrsz(4)/2.2]); 
end 

  
if (plot_toggle == 1) 
figure(fig_orig); 
hold on 
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pcolor(U,V,input_dose_level + InCircle); 
xlabel('X-coord (mm)') 
shading faceted 
%shading interp 
ylabel('Y-coord (mm)') 
xlim([U(1,1), U(numtemp,numtemp)])      
ylim([V(numtemp,numtemp), V(1,1)]) 
title('Original Input Dose Profile') 
hold off 
end 

  
%-------------------------------------------------------------------------- 

  

  

  
%*****************CREATE TABLES FOR NUMERICAL INTEGRATIONS***************** 
[ fract_top_table,fract_bott_table, 

L_Tot_Top_table,L_Phant_Top_table,L_Tot_Bott_table,L_Phant_Bott_table ] = Lookup_Gen( 

l,R,Q, U, V, InCircle ); 
%************************************************************************** 

  

  
%**********************PRIMARY LOOP**************************************** 
%************************************************************************** 
%It is now necessary to perform the scan of the phantom 'slice' by 
%translating the beam across the phantom for different angular intervals up 
%to 180 degrees. 

  
%theta_step defines the angular step size (in degrees!!!!) 
%s_step defines planar sweep step size in millimeters 
%d_tol effectively defines the beam width (2*d_tol = w) 
d_tol = 0.5*beam_width; 

  
%re-initialize theta and s indices: 
num_theta = 0; 
num_s = 0; 

  
%SETUP PROGRESS BAR======================================================== 
num_bar_counts = 0; 

  
for (theta=0:theta_step:180-theta_step) 
    num_bar_counts = num_bar_counts + 1; 
end 

  
bar1_step = 1/num_bar_counts; 

  
pbar1 = waitbar(0,'Computing Reconstruction...'); 

  
increment_1 = 0; %initialize increment for pbar1 
%========================================================================== 

   
%Initialize other Misc Variables: 
svar(1:s_tot) = (D/2):(-1)*s_step:(-D/2);   
thetavar(1:theta_tot) = 0:theta_step:180-theta_step; 
F(1:s_tot,1:theta_tot) = 0; 

  

  
for (theta=0:theta_step:180-theta_step) 
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    %increase theta count: 
    num_theta = num_theta + 1; 

     
    %Reset figures to speed up processing time (confirmed, reason unknown) 
    if(plot_toggle == 1) 
    close(fig_laser); 
    close(fig_recon); 
    fig_laser = figure('Color','white','Toolbar','none','Position',[scrsz(3)/100 

scrsz(4)/1.9 scrsz(3)/2.1 scrsz(4)/2.2]); 
    fig_recon = figure('Color','white','Toolbar','none','Position',[scrsz(3)/1.95 

scrsz(4)/1.9 scrsz(3)/2.1 scrsz(4)/2.2]); 
    end 

     

     
    %DISPLAY PROGRESS BAR================================================== 
    increment_1 = increment_1 + bar1_step; 
    waitbar(increment_1 - bar1_step,pbar1) 
    %======================================================================  

     
    %Reset S-counter: 
    num_s = 0; 

    
    for (s=(D/2):(-1)*s_step:(-D/2)) 

         
        %increase s count: 
        num_s = num_s + 1; 

        
        %Simulate the excitation pencil beam 
        [ Illum, ORDER_n, ORDER_m ] = LaserGen( theta, s, U, V, InCircle, D, d_tol); 
        %Returns: 
        % Illum(n,m) - logical: Illuminated? 1=Yes, 0=No 
        % ORDER_n(p) - p denotes illumination order, gives n-index 
        % ORDER_m(p) - p denotes illumination order, gives m-index 

      

         

         
        %------------------------ANIMATE BEAM PATH------------------------- 
        %Now plot the grids that were illuminated by the beam, just to  
        %check that the code is working! 

         
        if (plot_toggle == 1) 
        figure(fig_laser); 
        hold on 
        pcolor(U,V,Illum + InCircle); 
        xlabel('X-coord (mm)') 
        shading faceted 
        %shading interp 
        ylabel('Y-coord (mm)') 
        xlim([U(1,1), U(numtemp,numtemp)])      
        ylim([V(numtemp,numtemp), V(1,1)]) 
        title('Visualization of Excitation Beam') 
        hold off 
        end 
        %------------------------------------------------------------------ 
        %pause(0.25) %this pause allows enough time for the animation to be viewed by 

the user 

     

         

         
        %Internal Error Check: 
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        Num_Illum = length(ORDER_n); 

         
        if (Num_Illum ~= length(ORDER_m)) 
            error('Internal Error!') 
        end 

         

         
        signal_strength = 0; %reset signal output before looping through this set of 

excited cells 

         
        %step through each illuminated cell in order of illumination: 
        for (p=1:1:Num_Illum) 

             
            n = ORDER_n(p); 
            m = ORDER_m(p); 
            X0 = U(n,m); 
            Y0 = V(n,m); 
            dose = input_dose_level(n,m); %retrieves the does for the cell 

             
            %simulate the generation of photons at the cell site 
            [ alpha,epsilon, photobleach(n,m) ] = photon_gen( 

DNA_concentration,DNA_FAM_CS ,cell_length,dose,I,T,photobleach(n,m) ); 
            %alpha represents the number of photons removed from the beam 
            %epsilon is the number of photons released from that point 
            %photobleach keeps track of the number of relevent destroyed 
            %FAM molecules 

             

             
            %Now switch coordinate systems so that the detectors are 
            %stationary 
            [ x_cell,y_cell ] = ToDetector( X0, Y0, theta, s ); 

             

             

             
            %Determine which grid point these transformed coordinates are 
            %closest to so that the lookup tables can be used! 
            %============================================================== 
            [indtemp2,~] = size(U); 

             
            difftemp2 = 10000000000000000; 

             
            for (n2=1:1:indtemp2); 

                 
                difftemp3 = abs(x_cell - U(1,n2)); 

                 
                if (difftemp3 <= difftemp2) 
                    xXx = n2; % index of closest X grid match 
                    difftemp2 = difftemp3; 
                end 

                 
            end 

             
            difftemp2 = 10000000000000000; 

                 
            for (n2=1:1:indtemp2); 

                 
                difftemp3 = abs(y_cell - V(n2,1)); 

                 
                if (difftemp3 <= difftemp2) 
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                    yYy = n2; % index of closest Y grid match 
                    difftemp2 = difftemp3; 
                end 

                 
            end 
            %============================================================== 

             

             

             
            %ASSUMING NO ATTENUATION...------------------------------------ 
            %what percentage of outbound photons make it to Top Detector? 
            [ fract_top ] = fract_top_table( xXx, yYy ); 
            epsilon_top = epsilon*fract_top; %compute the # of photons 

             
            %what percentage of outbound photons make it to Bottom Detector? 
            [ fract_bott ] = fract_bott_table( xXx, yYy ); 
            epsilon_bott = epsilon*fract_bott; %compute the # of photons 
            %-------------------------------------------------------------- 

             

             

             

             
            %HOW MANY PHOTONS ACTUALLY GET ATTENUATED BY OTHER MOLECS?----- 
            %-------------------------------------------------------------- 

                

             
            %For Top Detector... 
            %what is the average path length to the detector? 
            L_Tot_Top = L_Tot_Top_table( xXx, yYy ); 
            %what is the average path length through the phantom? 
            L_Phant_Top = abs(L_Phant_Top_table( xXx, yYy )); 
            %what is the average path length through the matching tank? 
            L_Tank_Top = L_Tot_Top - L_Phant_Top; 
            %attenuation through the phantom: 
            epsilon_top = epsilon_top*exp((-1)*mu_phant*L_Phant_Top/10); 
            %attenuation through the matching tank: 
            epsilon_top = epsilon_top*exp((-1)*mu_tank*L_Tank_Top/10); 
            %now epsilon_top represents the # of photons that actually 
            %reach the top detector! 

             
            %For Bottom Detector... 
            %what is the average path length to the detector? 
            L_Tot_Bott = L_Tot_Bott_table( xXx, yYy ); 
            %what is the average path length through the phantom? 
            L_Phant_Bott = abs(L_Phant_Bott_table( xXx, yYy )); 
            %what is the average path length through the matching tank? 
            L_Tank_Bott = L_Tot_Bott - L_Phant_Bott; 
            %attenuation through the phantom: 
            epsilon_bott = epsilon_bott*exp((-1)*mu_phant*L_Phant_Bott/10); 
            %attenuation through the matching tank: 
            epsilon_bott = epsilon_bott*exp((-1)*mu_tank*L_Tank_Bott/10); 
            %now epsilon_bott represents the # of photons that actually 
            %reach the bottom detector!          
            %-------------------------------------------------------------- 

             

             

             

             
            %---------------------DETECTOR MODULE-------------------------- 
            %Can later simulate the nonlinearities of the detector (PMT) 
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            %Top Detector: 
            Nelec_Top = PMT_QE*epsilon_top; %how many photoelectrons made? 
            AnodeCharge_Top = (1.6E-19)*PMT_gain*Nelec_Top; %charge at Anode 
            Vout_Top = AnodeCharge_Top/AmpCapacitor; %magnitude of Vout 

             
            %Bottom Detector: 
            Nelec_Bott = PMT_QE*epsilon_bott; %how many photoelectrons made? 
            AnodeCharge_Bott = (1.6E-19)*PMT_gain*Nelec_Bott; %charge at Anode 
            Vout_Bott = AnodeCharge_Bott/AmpCapacitor; %magnitude of Vout 

             
            %This model assumes the use of an integrating charge amplifier 
            %-------------------------------------------------------------- 

             

             

             

             
            %----------------------CONVERSION MODULE----------------------- 
            %This simulates further amplification, introduction of noise, 
            %ADC to computer interface, etc.  

             
            %NOTE****PROGRAMMING ABANDONED DUE TO TIME CONSTRAINTS**** 
            signal_strength = signal_strength + Vout_Top + Vout_Bott; 
            %signal strength will continue to build up as the response of 
            %each excited cell is totalled.  
            %-------------------------------------------------------------- 
            %add data to reconstruction matrix       

             

             
        end 

         
        %now assign cumulative signal strength value to the excited line 
        for (p=1:1:Num_Illum) 
            n = ORDER_n(p); 
            m = ORDER_m(p); 
            g(n,m) = g(n,m) + signal_strength; 
        end 

         
        %construct F(theta,s) 
        F(num_s,num_theta) = signal_strength; 

         
        %**************************ANIMATE RECONSTRUCTION****************** 
        if (plot_toggle == 1) 
        figure(fig_recon) 
        hold on 
        pcolor(U,V,g); 
        xlabel('X-coord (mm)') 
        shading faceted 
        %shading interp 
        ylabel('Y-coord (mm)') 
        xlim([U(1,1), U(numtemp,numtemp)])      
        ylim([V(numtemp,numtemp), V(1,1)]) 
        title('Raw Reconstruction (Unfiltered)') 
        hold off 
        end 
        %****************************************************************** 

  

         
        %pause(0.25) 
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    end 

     

     
    %**************************ANIMATE RADON TRANSFORM****************** 
    if (plot_toggle == 1) 
    figure(fig_radon) 
    hold on 
    imagesc(thetavar,svar,F); 
    xlabel('Theta (Degrees)') 
    colormap(hot) 
    colorbar 
    ylabel('S') 
    ylim([svar(s_tot), svar(1)])      
    xlim([thetavar(1), thetavar(theta_tot)]) 
    title('Radon Transform (Unfiltered)') 
    hold off 
    end 
    %****************************************************************** 

     

     
    %close %closes previous figure... speeds up laser animation! (why?) 

     
end 

  
close(pbar1)  %close progress bar 

  
if (plot_toggle == 1) 
    close(fig_radon) 
    close(fig_laser) 
    close(fig_orig) 
end 

  
%************************************************************************** 
%************************************************************************** 

  

  

  

  

  
%================POST-PROCESSING RECONSTRUCTION============================ 

  
%Apply Digital Filter and Map Back to Image Space 
[ g,FF,gf ] = ImageFilter(  F , svar,thetavar,U, V, InCircle,input_dose_level ); 

  
%Quality-Assurance 
fig_g = figure('Color','white','Toolbar','none','Position',[scrsz(3)/100 scrsz(4)/1.9 

scrsz(3)/2.1 scrsz(4)/2.2]); 
fig_gf = figure('Color','white','Toolbar','none','Position',[scrsz(3)/100 scrsz(4)/1.9 

scrsz(3)/2.1 scrsz(4)/2.2]); 
fig_Orig = figure('Color','white','Toolbar','none','Position',[scrsz(3)/1.95 

scrsz(4)/1.9 scrsz(3)/2.1 scrsz(4)/2.2]); 
fig_radon = figure('Color','white','Toolbar','none','Position',[scrsz(3)/100 

scrsz(4)/23 scrsz(3)/2.1 scrsz(4)/2.2]); 
fig_radonF = figure('Color','white','Toolbar','none','Position',[scrsz(3)/1.95 

scrsz(4)/23 scrsz(3)/2.1 scrsz(4)/2.2]); 

  
N = numtemp; 

        
figure(fig_Orig);       
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hold on      
pcolor(U,V,input_dose_level);       
xlabel('X-coord (mm)')        
shading faceted        
ylabel('Y-coord (mm)')        
xlim([U(1,1), U(N,N)])           
ylim([V(N,N), V(1,1)])            
title('Actual Dose Profile')              
hold off 

  
figure(fig_g);       
hold on      
pcolor(U,V,g);       
xlabel('X-coord (mm)')        
shading faceted        
ylabel('Y-coord (mm)')        
xlim([U(1,1), U(N,N)])           
ylim([V(N,N), V(1,1)])            
title('Unfiltered Reconstruction')              
hold off 

  
figure(fig_gf);       
hold on      
pcolor(U,V,gf);       
xlabel('X-coord (mm)')        
shading faceted        
ylabel('Y-coord (mm)')        
xlim([U(1,1), U(N,N)])           
ylim([V(N,N), V(1,1)])            
title('Filtered Reconstruction')              
hold off 

         

         

   
    figure(fig_radon) 
    hold on 
    imagesc(thetavar,svar,F); 
    xlabel('Theta (Degrees)') 
    colormap(hot) 
    colorbar 
    ylabel('S') 
    ylim([svar(s_tot), svar(1)])      
    xlim([thetavar(1), thetavar(theta_tot)]) 
    title('Radon Transform (Unfiltered)') 
    hold off 

     
    figure(fig_radonF) 
    hold on 
    imagesc(thetavar,svar,FF); 
    xlabel('Theta (Degrees)') 
    colormap(hot) 
    colorbar 
    ylabel('S') 
    ylim([svar(s_tot), svar(1)])      
    xlim([thetavar(1), thetavar(theta_tot)]) 
    title('Radon Transform (Filtered)') 
    hold off 
%========================================================================== 

  

  
end 
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function [ cell_length , U, V, InCircle] = GridGen2D( D, Num ) 
%(C) Ryan Marchildon, Nov 17th, 2011 

  
%This function will generate a 2D grid of elements to represent a slice 
%through the dosimeter 'phantom'. Each grid element will be labelled with a 
%particular index. Note, all cells/elements are taken to be square.  

  
%INPUT ARGUMENTS: 
%D = Desired phantom Diameter (mm) 
%Num (N) = Number of element divisions along diameter 
%    -MUST BE AN ODD NUMBER! 

  
%Run Initialization Check on Input Parameters:----------------------------- 
if(mod(Num,2) == 0) 
        error('N must be an ODD integer') 
elseif(mod(Num,2) ~= 1) 
        error('N must be an odd INTEGER') 
end 
%-------------------------------------------------------------------------- 

  
%Calculate Cell Length: 
cell_length = D/(Num-1); 

  
%Generate Element Indexes and Coordinates 
%   -Start by making a square grid 
%NOTE: indexes cannot be negative, unfortunately... list positive indexes 
%first, then beyond N - (N-1)/2, go to negative numbers. 
%BUT: What I will do here is just start from the TOP LH corner 
%because I don't know what indexing difficulties to anticipate for the 
%actual image reconstruction 

  

  
xmin = ((-1)*(Num-1)*cell_length) + cell_length/2; 
xmax = ((1)*(Num-1)*cell_length - cell_length/2); 
ymin = ((-1)*(Num-1)*cell_length) + cell_length/2; 
ymax = ((1)*(Num-1)*cell_length) - cell_length/2; 

  
for (n=1:1:Num) %cycle through rows 

     
    for (m=1:1:Num) %cylce through columns 

         
        %Matrix for All X Coordinates 
        U(n,m) = (-1)*((Num-1)/2)*cell_length + cell_length*((m-1) ); 
        %Matrix for all Y Coordinates 
        V(n,m) = ((Num-1)/2)*cell_length - cell_length*((n-1) ); 

         
        %Determine which elements are within the circle: 
        Mag(n,m) =  sqrt((norm(U(n,m)))^2 + (norm(V(n,m)))^2); 

         
        if ( Mag(n,m) <= (D/2)) 
            InCircle(n,m) = 1; 
        elseif (Mag(n,m) > (D/2)) 
            InCircle(n,m) = 0; 
        end 

         
    end 

     
end 
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%REMEMBER - these sqares are NOT the actual cells 
%rather, the plotted POINTS represent the centre of the cells 
end 

  
%****************** 
%****************** 
%****************** 

  
function [ fract_top_table,fract_bott_table, 

L_Tot_Top_table,L_Phant_Top_table,L_Tot_Bott_table,L_Phant_Bott_table ] = Lookup_Gen( 

l,R,Q, U, V, InCircle ) 
%This function creates 'lookup tables' of numerical integrations to save 
%computing time. All excitation points will be approximated to sites on the 
%mesh.  

  
[N,~] = size(U); 

  
%Initialize the 'look-up' tables: 

  
fract_top_table(1:N,1:N) = 0; 

             
fract_bott_table(1:N,1:N) = 0;           

  
L_Tot_Top_table(1:N,1:N) = 0; 

          
L_Phant_Top_table(1:N,1:N) = 0;        

  
L_Tot_Bott_table(1:N,1:N) = 0; 

            
L_Phant_Bott_table(1:N,1:N) = 0; 

   

  
%SETUP PROGRESS BAR======================================================== 
num_bar_counts = N; 

  
bar1_step = 1/num_bar_counts; 

  
pbar1 = waitbar(0,'Forming Integral Tables...'); 

  
increment_1 = 0; %initialize increment for pbar1 
%========================================================================== 

  

  

  
for (n=1:1:N) 

     
    %DISPLAY PROGRESS BAR================================================== 
    increment_1 = increment_1 + bar1_step; 
    waitbar(increment_1 - bar1_step,pbar1) 
    %====================================================================== 

    

     
   for (m=1:1:N) 

      
       %Check to see if we need to bother with the computation: 
       %------------------------------------------------------------------- 
       Yes = 0; %by default do not proceed with calculation 
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       if( n >= 2 && m >= 2 && n < N && m < N)  

  
           if (InCircle(n,m) == 1 || InCircle(n-1,m) == 1 || InCircle(n+1,m) == 1 || 

InCircle(n,m-1) == 1 || InCircle(n,m+1) == 1) 

          
               Yes = 1; 

       
           end 

            
       else 
           if (InCircle(n,m) == 1) 

          
               Yes = 1; 

       
           end 

            
       end 
       %------------------------------------------------------------------- 

       
       if (Yes == 1) 

            
           %Perform the necessary numerical integrations 

            
           x_cell = U(n,m); 

            
           y_cell = V(n,m); 

            
           fract_top_table(n,m) = Cross_Top( l, R, x_cell, y_cell ); 

             
           fract_bott_table(n,m) = Cross_Bott( l, R, x_cell, y_cell );             

  
           L_Tot_Top_table(n,m) = L_Total_Top( l,R,x_cell,y_cell ); 

          
           L_Phant_Top_table(n,m) = L_P_Top( Q, R, x_cell, y_cell );         

  
           L_Tot_Bott_table(n,m) = L_Total_Bott( l,R,x_cell,y_cell ); 

            
           L_Phant_Bott_table(n,m) = L_P_Bott( Q,R,x_cell,y_cell ); 

            
       end 

        

        

         
   end 
end 

  
close(pbar1); 

  
end 

  
%****************** 
%****************** 
%****************** 

  
function [ percent_of_flux ] = Cross_Top( l, R, x0, y0 ) 
%This function computes the total cross-section of the top detector with 
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%respect to the outward flux of photons from the excited cell. This 
%cross-section is then converted into a percentage of the total outbound 
%photon flux.  

  
%l = distance between phantom centre and detector centre 
%x0 = horizontal position of excited cell 
%y0 = vertical position of excited cell 
%R = radius of detector 

  
%Imporant variable definitions: 

  
L = l - y0; 
theta = atan(abs(x0)/L); 
r = sqrt(L^2 + (abs(x0))^2); 
lambda = r/R; 

  
%initialize index 
n = 0; 

  
%initialize step size 
steps = 1000; 
stepsize = (2*pi)/steps; 

  
%itialize arrays to save computation time 
f(1:steps) = 0; 
x(1:steps) = 0; 

  

  
for (phi=0:stepsize:2*pi) 

     
    n = n + 1; 

     
    %The function we want to integrate over: 
    f(n) = ((lambda-sin(theta)*cos(phi))/(1-((sin(theta))^2)*((cos(phi))^2)))*(1 - 

(2*lambda*sin(theta)*cos(phi))/(1 + lambda^2)); 
    x(n) = phi; 

     
end 

  

  
%compute integral numerically using the Trapezoidal Rule 
integral = trapz(x,f); 

  
%compute cross-section 
OMEGA = 2*pi - cos(theta)*((1 + lambda^2)^(-1/2))*integral; 

  
%convert cross-section to a fraction of the spherical flux 
percent_of_flux = OMEGA/(4*pi); 

  

  

  
end 

  
%****************** 
%****************** 
%****************** 

  
function [ percent_of_flux ] = Cross_Bott( l, R, x0, y0 ) 
%This function computes the total cross-section of the bottom detector with 
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%respect to the outward flux of photons from the excited cell. This 
%cross-section is then converted into a percentage of the total outbound 
%photon flux.  

  
%l = distance between phantom centre and detector centre 
%x0 = horizontal position of excited cell 
%y0 = vertical position of excited cell 
%R = radius of detector 

  
%Imporant variable definitions: 

  
L = l + y0; 
theta = atan(abs(x0)/L); 
r = sqrt(L^2 + (abs(x0))^2); 
lambda = r/R; 

  
%initialize index 
n = 0; 

  
%initialize step size 
steps = 1000; 
stepsize = (2*pi)/steps; 

  
%itialize arrays to save computation time 
f(1:steps) = 0; 
x(1:steps) = 0; 

  

  
for (phi=0:stepsize:2*pi) 

     
    n = n + 1; 

     
    %The function we want to integrate over: 
    f(n) = ((lambda-sin(theta)*cos(phi))/(1-((sin(theta))^2)*((cos(phi))^2)))*(1 - 

(2*lambda*sin(theta)*cos(phi))/(1 + lambda^2)); 
    x(n) = phi; 

     
end 

  
%compute integral numerically using the Trapezoidal Rule 
integral = trapz(x,f); 

  
%compute cross-section 
OMEGA = 2*pi - cos(theta)*((1 + lambda^2)^(-1/2))*integral; 

  
%convert cross-section to a fraction of the spherical flux 
percent_of_flux = OMEGA/(4*pi); 

  

  

  
end 

  
%****************** 
%****************** 
%****************** 

  
function [ int_value ] = L_P_Top( Q, R, x0, y0 ) 
%This function performs the numerical integration to compute the average 
%path length taken from the photon source to the "top" detector.  
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%need to specify R,x0,y0,Q 
%Q is the radius of the Phantom dosimeter jar 
%R is the radius of the circular detector face  
%x0,y0 are the coordinates of the excited cell 
%l is the distance between the phantom centre and the detector centre 

  
%PS in MATLAB the function log(X) takes the NATURAL (not base 10) logarithm 

  
n = 0; %initialize index 

  

  
stepsize = 2*R/1000; %want to break computation into 1000 steps; 

  
steps = 2*R/stepsize; %calc # of steps to initialize array 

  
f(1:steps) = 0; %initialize array 

  
for (x=(-1)*R:stepsize:R) 

     
    n = n + 1; 

     
    C = (x-x0)^2 + (sqrt(Q^2 - x^2)-y0)^2; 

     
    f(n) = sqrt(R^2-x^2)*sqrt(C+R^2-x^2)-(1/2)*C*log(-sqrt(R^2-x^2)+sqrt(C+R^2-

x^2))+(1/2)*C*log(sqrt(R^2-x^2)+sqrt(C+R^2-x^2)); 

     
    %fix potential issues with obtaining log(0) in the second term 
    g(n) = -sqrt(R^2-x^2)+sqrt(C+R^2-x^2); 
    if(g(n) == 0) 
        f(n) = f(n-1); 
    end 

     
    X(n) = x; 

     
end 

  
int_value = trapz(X,f); %sum of all possible path lengths 
int_value = int_value/(pi*R^2); %normalize the output 

  

  
end 

  
%****************** 
%****************** 
%****************** 

  
function [ int_value ] = L_P_Bott( Q,R,x0,y0 ) 
%This function performs the numerical integration to compute the average 
%path length taken from the photon source to the "top" detector.  

  
%need to specify R,x0,y0,Q 
%Q is the radius of the Phantom dosimeter jar 
%R is the radius of the circular detector face  
%x0,y0 are the coordinates of the excited cell 
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%PS in MATLAB the function log(X) takes the NATURAL (not base 10) logarithm 

  
n = 0; %initialize index 

  
stepsize = 2*R/1000; %want to break computation into 1000 steps; 

  
steps = 2*R/stepsize; %calc # of steps to initialize array 

  
f(1:steps) = 0; %initialize array 

  
for (x=(-1)*R:stepsize:R) 

     
    n = n + 1; 

     
    C = (x-x0)^2 + ((-1)*sqrt(Q^2 - x^2)-y0)^2; %only diff. from 'top' alg.  

     
    f(n) = sqrt(R^2-x^2)*sqrt(C+R^2-x^2)-(1/2)*C*log(-sqrt(R^2-x^2)+sqrt(C+R^2-

x^2))+(1/2)*C*log(sqrt(R^2-x^2)+sqrt(C+R^2-x^2)); 

     
    %fix potential issues with obtaining log(0) in the second term 
    g(n) = -sqrt(R^2-x^2)+sqrt(C+R^2-x^2); 
    if(g(n) == 0) 
        f(n) = f(n-1); 
    end 

     
    X(n) = x; 

  
end 

  

  
int_value = trapz(X,f); %sum of all possible path lengths 
int_value = int_value/(pi*R^2); %normalize the output 

  
%Note: computation was tested and found to be accurate to ~0.005% within the 
%vicinity of (x0,y0) = (0,0) 

  
end 

  
%****************** 
%****************** 
%****************** 

  
function [ int_value ] = L_Phantom_Top( Q, R, x0, y0 ) 
%This function performs the numerical integration to compute the average 
%path length taken from the photon source to the "top" detector.  

  

  
%need to specify R,x0,y0,Q 
%Q is the radius of the Phantom dosimeter jar 
%R is the radius of the circular detector face  
%x0,y0 are the coordinates of the excited cell 
%l is the distance between the phantom centre and the detector centre 

  
%PS in MATLAB the function log(X) takes the NATURAL (not base 10) logarithm 

  
n = 0; %initialize index 
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stepsize = 2*R/1000; %want to break computation into 1000 steps; 

  
steps = 2*R/stepsize; %calc # of steps to initialize array 

  
f(1:steps) = 0; %initialize array 

  
for (x=(-1)*R:stepsize:R) 

     
    n = n + 1; 

     
    C = (x-x0)^2 + (sqrt(Q^2 - x^2)-y0)^2; 

     
    f(n) = sqrt(R^2-x^2)*sqrt(C+R^2-x^2)-(1/2)*C*log(-sqrt(R^2-x^2)+sqrt(C+R^2-

x^2))+(1/2)*C*log(sqrt(R^2-x^2)+sqrt(C+R^2-x^2)); 

     
    X(n) = x; 

     
end 

  
int_value = trapz(X,f); %sum of all possible path lengths 
int_value = int_value/(pi*R^2); %normalize the output 

  

  
end 

  
%****************** 
%****************** 
%****************** 

  
function [ int_value ] = L_Phantom_Bott( Q,R,x0,y0 ) 
%This function performs the numerical integration to compute the average 
%path length taken from the photon source to the "top" detector.  

  
%need to specify R,x0,y0,l 
%Q is the radius of the Phantom dosimeter jar 
%R is the radius of the circular detector face  
%x0,y0 are the coordinates of the excited cell 
%l is the distance between the phantom centre and the detector centre 

  
%PS in MATLAB the function log(X) takes the NATURAL (not base 10) logarithm 

  
n = 0; %initialize index 

  
stepsize = 2*R/1000; %want to break computation into 1000 steps; 

  
steps = 2*R/stepsize; %calc # of steps to initialize array 

  
f(1:steps) = 0; %initialize array 

  
for (x=(-1)*R:stepsize:R) 

     
    n = n + 1; 

     
    C = (x-x0)^2 + ((-1)*sqrt(Q^2 - x^2)-y0)^2; %only diff. from 'top' alg.  

     
    f(n) = sqrt(R^2-x^2)*sqrt(C+R^2-x^2)-(1/2)*C*log(-sqrt(R^2-x^2)+sqrt(C+R^2-

x^2))+(1/2)*C*log(sqrt(R^2-x^2)+sqrt(C+R^2-x^2)); 

     



57 

 

    X(n) = x; 

     
end 

  
int_value = trapz(X,f); %sum of all possible path lengths 
int_value = int_value/(pi*R^2); %normalize the output 

  
%Note: computation was tested and found to be accurate to ~0.005% within the 
%vicinity of (x0,y0) = (0,0) 

  
end 

  
%****************** 
%****************** 
%****************** 

  
function [ int_value ] = L_Total_Top( l,R,x0,y0 ) 
%This function performs the numerical integration to compute the average 
%path length taken from the photon source to the "top" detector.  

  
%need to specify R,x0,y0,l 

  
%PS in MATLAB the function log(X) takes the NATURAL (not base 10) logarithm 

  
n = 0; %initialize index 

  
stepsize = 2*R/1000; %want to break computation into 1000 steps; 

  
steps = 2*R/stepsize; %calc # of steps to initialize array 

  
f(1:steps) = 0; %initialize array 

  
for (x=(-1)*R:stepsize:R) 

     
    n = n + 1; 

     
    C = (x-x0)^2 + (l-y0)^2; 

     
    f(n) = sqrt(R^2-x^2)*sqrt(C+R^2-x^2)-(1/2)*C*log(-sqrt(R^2-x^2)+sqrt(C+R^2-

x^2))+(1/2)*C*log(sqrt(R^2-x^2)+sqrt(C+R^2-x^2)); 

     
    X(n) = x; 

     
end 

  
int_value = trapz(X,f); %sum of all possible path lengths 
int_value = int_value/(pi*R^2); %normalize the output 

  

  
end 

  
%****************** 
%****************** 
%****************** 

  
function [ int_value ] = L_Total_Bott( l,R,x0,y0 ) 
%This function performs the numerical integration to compute the average 
%path length taken from the photon source to the "top" detector.  
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%need to specify R,x0,y0,l 

  
%PS in MATLAB the function log(X) takes the NATURAL (not base 10) logarithm 

  
l = (-1)*l; % <- only difference from top detector algorithm 

  
n = 0; %initialize index 

  
stepsize = 2*R/1000; %want to break computation into 1000 steps; 

  
steps = 2*R/stepsize; %calc # of steps to initialize array 

  
f(1:steps) = 0; %initialize array 

  
for (x=(-1)*R:stepsize:R) 

     
    n = n + 1; 

     
    C = (x-x0)^2 + (l-y0)^2; 

     
    f(n) = sqrt(R^2-x^2)*sqrt(C+R^2-x^2)-(1/2)*C*log(-sqrt(R^2-x^2)+sqrt(C+R^2-

x^2))+(1/2)*C*log(sqrt(R^2-x^2)+sqrt(C+R^2-x^2)); 

     
    X(n) = x; 

     
end 

  
int_value = trapz(X,f); %sum of all possible path lengths 
int_value = int_value/(pi*R^2); %normalize the output 

  

  
end 

  
%****************** 
%****************** 
%****************** 

  
function [ Illum, ORDER_n, ORDER_m ] = LaserGen( theta, s, U, V, InCircle, D, d_tol) 
%This function generates a virtual laser beam at a particular orientation. 
%The angle from the x-axis is defined by theta. For any given theta the 
%beam can then be moved across a plane by translating through a range -s to 
%+s. The objective is to determine which grid points are 'illuminated' by 
%the beam.  

  
%THETA MUST BE IN Degrees!!! 
%Convert Theta to radians now: 
theta = pi/180*theta; 

  
%U is a matrix containing the x-coordinate data for every grid point, as 
%generated by GridGen2D 

  
%V is a matrix containing the y-coordinate data for every grid point, as 
%generated by GridGen2D 

  
%InCircle is a true/false matrix indicating whether the coordine falls 
%within the phantom dosimeter jar (i.e. "In the circle") 
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%D is the diameter of the phantom that was used to define the grid in 
%GridGen2D 

  
%d_tol is the maximum distance from the laser beam at which a gridpoint 
%will be considered 'illuminated' ---- basically, it is related to the 
%chosen beam width! 

  

  
%NOTE! Can save calculation time later by only doing computation for 
%gridpoints that lie within the phantom jar circle (i.e. incircle matrix 
%from GridGen2D) 

  

  

  
%*****************BEAM TRACING & ILLUMINATION****************************** 
%Determine number of rows and coloumns in grid space: 
[N,N] = size(U); 

  
if (size(U) ~= size(V)) 
    error('U and V matrices are not equal size!') 
end 

  
%Define distance of beam source from grid centre 
r = (D/2)*sqrt(2); 

  
%Define location of beam source as well as mirror pair: 
x1 = r*cos(theta); 
y1 = r*sin(theta); 
x2 = (-1)*x1; 
y2 = (-1)*y1; 

  
%Make modifications to shift beam according to "s" parameter: 
deltaX = -s*sin(theta); 
deltaY = s*cos(theta); 
x1 = x1 + deltaX; 
x2 = x2 + deltaX; 
y1 = y1 + deltaY; 
y2 = y2 + deltaY; 

  

  

  
%Now define line that traces out beam path: 
if (y1==y2) 
    CASE = 1; % case where slope = 0 
elseif (abs(x1 - x2) <= 10^(-3)) 
    CASE = 2; % case where slope = infinity 
else 
    CASE = 0; 
    slope = (y1-y2)/(x1-x2); 
    b = y1 - slope*x1; 
end 

  

  

  
%Now loop through each gridpoint and determine how close it is to beam and 
%therefore weather or not it becomes illuminated by laser light 

  
%Pre-Allocate memory for illumination matrix: 
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Illum(1:N,1:N) = 0; 

  

  
for (n=1:1:N) 
    for (m=1:1:N) 

         
        %Only do the calculation for gridpoints "InCircle" 
        if (InCircle(n,m) == 1) 

             
            x0 = U(n,m); 
            y0 = V(n,m); 

             
            if (CASE == 0) %nonzero finite slope 

        
                %Define intersecting line (y = -1/m*x + c) 
                %Note: this characterizes shortest d from gridpoint to beam 

         
                c = y0 + (1/slope)*x0; 

         
                %Find point of intersection 

         
                xint = (c-b)/(slope+1/slope); 
                yint = slope*xint + b; 

        
                %Calculate shortest distance between gridpoint and beam 

         
                d = sqrt((x0-xint)^2 + (y0-yint)^2); 

             
            elseif (CASE == 1) %zero slope 

                 
                d = sqrt((y0 - y1)^2); 

                 
            elseif (CASE == 2) %infinite slope (undefined)  

                 
                d = sqrt((x0 - x1)^2); 

                 
            end 

         

             
            %Now logical statement: illuminated? Yes or No 

         
            if (d <= d_tol) 
                Illum(n,m) = 1; 
            else    
                Illum(n,m) = 0; 
            end 

             

             
        end 

         
    end 

     
end 
%************************************************************************** 
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%*****************ILLUMINATION ORDER*************************************** 
%Now wish to calculate an 'illumination order' for the purpose of 
%determining beam attenuation later on... 

  
distance(1:N,1:N) = 0; %initialize array to save computing time 
num = 0; %a placeholder to index the ACTIVE point number 

  
for (n=1:1:N) 
    for (m=1:1:N) 
        %Only do the calculation for Illuminated Gridpoints 
        if (Illum(n,m) == 1) 

             
            %Calculate distance from laser source 
            distance(n,m) = sqrt((U(n,m) - x1)^2 + (V(n,m) - y1)^2); 

             
            %add nonzero illum count to total number of illuminated cells: 
            num = num+1; 

             
        end 
    end 
end 

  

  
Z = num; %define total number of illuminated points that we must search 
count_index_n(1:Z) = 0; %initialize count indices 
count_index_m(1:Z) = 0;  
count_index_dist(1:Z) = 0;  

  

  
%now build up the entire count index: 

  
index = 0; %re-initialize new index number 

  
for (n=1:1:N) 
    for (m=1:1:N) 
        %Only index Illuminated Gridpoints 
        if (Illum(n,m) == 1) 

             
            index = index + 1; 
            count_index_n(index) = n; 
            count_index_m(index) = m; 
            count_index_dist(index) = distance(n,m); 

            

             
        end 
    end 
end 

  
%now sort through count index to create an order for the gridpoints (n,m) 
%based upon illumination order (i.e. smallest distance to largest) 

  
[~,s_indices] = sort(count_index_dist); %default sorts in ascending order 
%note: first entry would be re-ordered array, second entry is index 

  
%initialize new arrays to save computing time: 
ORDER_n(1:Z) = 0; 
ORDER_m(1:Z) = 0; 

  
for (p = 1:1:Z) 
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    index = s_indices(p); 
    ORDER_n(p) = count_index_n(index); 
    ORDER_m(p) = count_index_m(index);       

     
end 
%************************************************************************* 

  
end 

  
%****************** 
%****************** 
%****************** 

  
function [ x_cell,y_cell ] = ToDetector( X0, Y0, theta, s ) 
%Performs Coordinate transform in preparation for computing the number of 
%photons that make it to each detector 

  
%X0,Y0 is the coordinate of the excited cell in the phantom's frame of 
%reference (i.e. the laser and detectors rotate around a stationary 
%phantom) 

  
%THETA MUST BE IN Degrees!!! 
%Convert Theta to radians now: 
theta = pi/180*theta; 

  
%*******************COORDINATE TRANSFORM 1********************************* 
%Transform the coordinate of the excited cell into the frame in which the 
%phantom rotates but the laser and detectors are stationary 

  
%Use the definition of the rotation matrix to find the new coordinate: 

  
x_cell = cos(theta)*X0 + sin(theta)*Y0; 
y_cell = (-1)*sin(theta)*X0  + cos(theta)*Y0; 

  
%PS: checked the output! transform appears to be working properly! 
%************************************************************************** 

  

  
end 

  
%****************** 
%****************** 
%****************** 

  
function [ alpha,epsilon, bleached_DNA ] = photon_gen( 

conc,sigma,cell_length,dose,I,T,photobleach ) 
%This function simulates the cell response to the excitation beam. It first 
%calculates the number of photons absorbed by the FAM molecules, and then 
%determines the number of stokes-shifted photons that are re-emitted. It is 
%assumed that these photons are emitted in any direction with equal 
%probability (i.e. uniformly distributed throughout a spherical flux).  

  
%conc = concentration of DNA molecs 
%sigma = absorption cross-section of FAM molecs 
%I = indicent laser intensity, W/m^2 
%T = amount of time pulse is active, s 
%dose = amount of delivered dose in Grays 
%photobleach = number representing the number of photobleached molecs 
bleached_DNA = photobleach; 
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%Declare physical constants: 
cell_length = cell_length/1000; %convert cell length from mm to m 
A = cell_length^2; 
h = 6.626*10^(-34); % m^2kg/s - Planck's Constant 
c = 299792458; %m/s - Speed of Light in Vacuum 
lambda = 488*10^(-9); %m - peak absorption wavelength for FAM 
Na = 6.022*10^23; % Avogadro's number 
M = 0.0054; %linear coefficient in broken DNA vs delivered dose relation 
bleach_probability = 0; %arbitarily assigned 

  
%compute total number of broken DNA strands: 
brkn_DNA = 0.0054*dose*conc*Na*cell_length^3/1000; 

  

     
%compute number of photons absorbed: 
alpha = (lambda/(h*c))*I*T*A*(1 - exp(-(conc*Na/1000)*sigma*cell_length/100)); 

  

  
if (brkn_DNA ~= 0) 
%compute the number of photons re-emitted: 
epsilon = M*dose*0.7*alpha*(1- bleached_DNA/brkn_DNA); 
%note: 0.7 represents overall quantum efficiency 
%the last term accounts for the photobleaching effect 
else 
    epsilon = 0; 
end 

  
%how many relevent molecs were destroyed by photobleaching? 
new_bleach = M*dose*alpha*bleach_probability;  

  
%add this to the photobleached total: 

  
bleached_DNA = bleached_DNA + new_bleach; 

  
end 

  
%****************** 
%****************** 
%****************** 

  
function [ g,FF,gf ] = ImageFilter(  F , svar,thetavar,U, V, InCircle,input_dose_level 

) 
%This function is used for experimenting with different filter parameters 

  
theta_tot = length(thetavar); 
s_tot = length(svar); 
s_step = abs(svar(2) - svar(1)); 

  
c1 = 1; 
c2 = pi; 

  

  
%================POST-PROCESSING RECONSTRUCTION============================ 

  
%PART I: Apply Filtering to the Radon Transform (i.e. projections) 
%************************************************************************** 
[NNN,~] = size(F); 
for (thetaind=1:1:theta_tot) 
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    Y1 = fft(F(1:NNN,thetaind))/NNN; %take discrete Fourier transform 
    Y1 = fftshift(Y1); %center frequencies about f = 0 

     
    freq = (-NNN/2 + 0.5):1:(NNN/2 - 0.5); %generate associated frequencies 
    freq = freq/(s_step*(NNN-1)); %apply proper scaling 

     
    freqmax = freq(length(freq)); %magnitude of max frequency used 

     
    %NOW ACT UPON FT WITH FILTER KERNAL 
    for (n=1:1:length(freq)) 

         
        if (abs(freq(n)) <= 0.01) 
           H(n) = 0.1; 
            Y2(n) = Y1(n)*H(n); 
        else 
           H(n) = c1*pi*abs(2*pi*freq(n))*(sinc(freq(n)*c2/(pi*freqmax))*pi); 
           %H(n) = pi*abs(2*pi*freq(n)); %ramp filter 
           Y2(n) = Y1(n)*H(n); 
        end 
    end 

     
    Y3 = ifftshift(Y2); %shift back to original DFT output 
    Y3 = ifft(Y3*NNN); %take inverse Fourier transform 

     
    FF(1:NNN,thetaind) = Y3(1:NNN); %assign filtered Radon Transform   

     

     
end 

  

  
%PART II: Convert to Image Space (using nearest-neighbour interpolation) 
%************************************************************************** 

  
[N,M] = size(U); 

  
if (N ~= M) 
    error('Houston, we have a problem'); 
end 

  
ss(1:N,1:N) = 0; % initialize interpolation matrix 
g(1:N,1:N) = 0; % reconstruction matrix (unfiltered) 
gf(1:N,1:N) = 0; % reconstruction matrix (filtered) 

  
for (thetaind=1:1:theta_tot) 

     
    %compute s-value for each (x,y) for this given angle 
    for (n=1:1:N) 
        for(m=1:1:M) 
           if (InCircle(n,m) ==1) 
               %compute "s" for that gridpoint (remember to convert to 
               %radians) 
               ss(n,m) = U(n,m)*cos(pi/180*thetavar(thetaind)) + 

V(n,m)*sin(pi/180*thetavar(thetaind));   
           else 
               ss(n,m) = 10000000; %assign out of range value 
           end 
        end 
    end 



65 

 

     

     
    for (sind=1:1:s_tot) 
        for(n=1:1:N) 
            for(m=1:1:M) 
                if(abs(ss(n,m) - svar(sind)) <= 1) %see if pixel matches s 
                    g(n,m) = g(n,m) + F(sind,thetaind); 
                    gf(n,m) = gf(n,m) + FF(sind,thetaind); 
                end 
            end 
        end 
    end 

     
end 

  
%normalize g by number of contributing angles: 
g = g/theta_tot; 
gf = gf/theta_tot; 

  
%For some reason this algorithm rotates the image by 90 degrees CW 
%Thus the output matrices must be rotated by 90 degrees CCW to compensate 
g = rot90(g); 
gf = rot90(gf); 
%========================================================================== 
end 

  

  

 

CODE FOR ERROR EVALUATION: 

function [ input,gf_output, error_map, max_error ] = ErrorMap( U,V,input_dose_level, 

gf ) 

% gf = dose distribution as measured by the CT algorithm 

% input_dose_level = true dose distribution 

% U -> x coordinates for image 

% V -> y coordinates for image 

  

[N,M] = size(U); 

  

  

%========================================================================== 

%Normalize both dose distributions with respect to the largest dose 

%magnitude found in either array, such that the highest intensity 

%corresponds to an element value of 1.  

  

%make sure no values are negative:***************** 

  

  

%initialize values: 

present_min_gf = 100000000000; 

  

%run loop 

for (n = 1:1:N) 

   for(m = 1:1:M) 

      value = gf(n,m); 

      if (value <= present_min_gf) 

          present_min_gf = value; 

      end 

   end 

end 
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correction = (-1)*present_min_gf; 

gf = gf + correction; 

  

  

  

  

%search for the max value:******************** 

  

%initialize values: 

present_max_gf = -100000000000; 

  

%run loop 

for (n = 1:1:N) 

   for(m = 1:1:M) 

      value = gf(n,m); 

      if (value >= present_max_gf) 

          present_max_gf = value; 

          index_n_gf = n; 

          index_m_gf = m; 

      end 

   end 

end 

  

if (present_max_gf == 0) 

    error('Something went horribly, horribly wrong'); 

end 

  

gf = gf/present_max_gf; %normalize! 

  

%check normalization: 

if (gf(index_n_gf,index_m_gf) ~= 1) 

    error('Something went horribly, horribly wrong'); 

end 

  

  

  

  

  

%make sure no values are negative:***************** 

  

  

%initialize values: 

present_min_input = 100000000000; 

  

%run loop 

for (n = 1:1:N) 

   for(m = 1:1:M) 

      value = input_dose_level(n,m); 

      if (value <= present_min_input) 

          present_min_input = value; 

      end 

   end 

end 

  

correction = (-1)*present_min_input; 

input_dose_level = input_dose_level + correction; 

  

  

%search for the max value:******************** 

  

  

%initialize values: 

present_max_input = -100000000000; 
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%run loop 

for (n = 1:1:N) 

   for(m = 1:1:M) 

      value = input_dose_level(n,m); 

      if (value >= present_max_input) 

          present_max_input = value; 

          index_n_input = n; 

          index_m_input = m; 

      end 

   end 

end 

  

if (present_max_input == 0) 

    error('Something went horribly, horribly wrong'); 

end 

  

input = input_dose_level/present_max_input; %normalize! 

  

%check normalization: 

if (input(index_n_input,index_m_input) ~= 1) 

    error('Something went horribly, horribly wrong'); 

end 

  

  

%========================================================================== 

  

%         figure(); 

%         hold on 

%         pcolor(U,V,gf); 

%         xlabel('X-coord (mm)') 

%         shading faceted 

%         ylabel('Y-coord (mm)') 

%         xlim([U(1,1), U(N,N)])      

%         ylim([V(N,N), V(1,1)]) 

%         title('gf after') 

%         hold off 

         

  

%========================================================================== 

%Compute the  error (with respect to the true dose) for each pixel 

  

error_map(1:N,1:N) = 0 ; 

  

for (n = 1:1:N) 

   for(m = 1:1:M) 

       error_map(n,m) = abs(gf(n,m) - input(n,m)); 

   end 

end 

  

percent_map(1:N,1:N) = 0 ; 

  

for (n = 1:1:N) 

   for(m = 1:1:M) 

       if (gf(n,m) == 0) 

           percent_map(n,m) = abs(gf(n,m) - input(n,m))/0.000000001; 

       else 

           percent_map(n,m) = abs(gf(n,m) - input(n,m))/gf(n,m); 

       end 

   end 

end 

  

%correct background in percent map: 
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for (n = 1:1:N) 

   for(m = 1:1:M) 

       if (percent_map(n,m) == 1) 

            percent_map(n,m) = 0; 

       end 

   end 

end 

  

%Determine the Max error:******************** 

  

%initialize values: 

max_error = 0; 

  

%run loop 

for (n = 1:1:N) 

   for(m = 1:1:M) 

      value = error_map(n,m); 

      if (value >= max_error) 

          max_error = value; 

      end 

   end 

end 

  

%Plot the Error Map 

  

    figure() 

    hold on 

    pcolor(U,V,error_map); 

    colormap(hot) 

    colorbar 

    xlabel('X-coord (mm)') 

    ylabel('Y-coord (mm)') 

    xlim([U(1,1), U(N,N)])      

    ylim([V(N,N), V(1,1)]) 

    title('Absolute Reconstruction Error') 

    hold off 

  

     

    %Plot the % Error Map 

  

    figure() 

    hold on 

    pcolor(U,V,100*percent_map); 

    colormap(hot) 

    colorbar 

    xlabel('X-coord (mm)') 

    ylabel('Y-coord (mm)') 

    xlim([U(1,1), U(N,N)])      

    ylim([V(N,N), V(1,1)]) 

    title('% Reconstruction Error') 

    hold off 

  

  

%========================================================================== 

  

gf_output = gf; 

  

end 

  

 

 


